第一类曲面积分 
设曲面 S S S   是光滑的,函数 f ( x , y , z ) f(x, y, z) f ( x , y , z )   在 S S S   上有定义,将 S S S   任意分为 n n n   小块 Δ S i ( i = 1 , 2 , ⋯   , n ) \Delta S_{i}(i=1,2, \cdots, n) Δ S i  ( i = 1 , 2 , ⋯ , n )  ,Δ S i \Delta S_{i} Δ S i    同时也表示这个小的曲面面积。
令 λ = max  1 ⩽ i ⩽ n { d ( Δ S i ) } \lambda=\max\limits_{1 \le i \le n}\left\{d(\Delta S_{i})\right\} λ = 1 ⩽ i ⩽ n max  { d ( Δ S i  ) }  。在 Δ S i \Delta S_{i} Δ S i    上任取一点 ( ξ i , η i , ζ i ) \left(\xi_{i}, \eta_{i}, \zeta_{i}\right) ( ξ i  , η i  , ζ i  )  ,作乘积 f ( ξ i , η i , ζ i ) Δ S i f\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta S_{i} f ( ξ i  , η i  , ζ i  ) Δ S i   ,并作和 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ S i \displaystyle \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta S_{i} i = 1 ∑ n  f ( ξ i  , η i  , ζ i  ) Δ S i   。
如果当 λ → 0 \lambda \to 0 λ → 0   时,这个和式的极限总存在(且与曲面 S S S   的分割和点 ( ξ i , η i , ζ i ) \left(\xi_{i}, \eta_{i}, \zeta_{i}\right) ( ξ i  , η i  , ζ i  )   的取法无关),则称此极限为函数 f ( x , y , z ) f(x, y, z) f ( x , y , z )   在曲面 S S S   上的第一类曲面积分 或对面积的曲面积分 ,记为
∬ S f ( x , y , z )   d S \iint_S f(x, y, z) \d S
 ∬ S  f ( x , y , z ) d S 
设 S S S   可参数化为 r ( x , y ) = ( x , y , g ( x , y ) ) ,   ( x , y ) ∈ D \bm{r}(x, y) = (x, y, g(x, y)),\, (x, y) \in D r ( x , y ) = ( x , y , g ( x , y )) , ( x , y ) ∈ D  ,且 g g g   在 D D D   上连续可微,则
  d S = ∣ r x ′ × r y ′ ∣   d x   d y = ∣ ( 1 , 0 , ∂ g ∂ x ) × ( 0 , 1 , ∂ g ∂ y ) ∣   d x   d y = ∣ ( − ∂ g ∂ x , − ∂ g ∂ y , 1 ) ∣   d x   d y = 1 + ( ∂ g ∂ x ) 2 + ( ∂ g ∂ y ) 2   d x   d y \begin{aligned}
    \d S &= |\bm{r}_x' \boldsymbol{\times} \bm{r}_y'| \d x \d y\\
    &= \left|\left(1, 0, \dfrac{\partial g}{\partial x}\right) \boldsymbol{\times} \left(0, 1, \dfrac{\partial g}{\partial y}\right)\right| \d x \d y\\
    &= \left\lvert \left( -\dfrac{\partial g}{\partial x}, -\dfrac{\partial g}{\partial y}, 1 \right)  \right\rvert \d x \d y\\
    &= \sqrt{1 + \left(\frac{\partial g}{\partial x}\right)^2 + \left(\frac{\partial g}{\partial y}\right)^2} \d x \d y
\end{aligned}
 d S  = ∣ r x ′  × r y ′  ∣ d x d y =  ( 1 , 0 , ∂ x ∂ g  ) × ( 0 , 1 , ∂ y ∂ g  )  d x d y =  ( − ∂ x ∂ g  , − ∂ y ∂ g  , 1 )  d x d y = 1 + ( ∂ x ∂ g  ) 2 + ( ∂ y ∂ g  ) 2  d x d y  
则
∬ S f ( x , y , z )   d S = ∬ D f ( x , y , g ( x , y ) ) 1 + ( ∂ g ∂ x ) 2 + ( ∂ g ∂ y ) 2   d x   d y \iint_S f(x, y, z) \d S =\\ \boxed{\iint_D f(x, y, g(x, y)) \sqrt{1 + \left(\frac{\partial g}{\partial x}\right)^2 + \left(\frac{\partial g}{\partial y}\right)^2} \d x \d y}
 ∬ S  f ( x , y , z ) d S = ∬ D  f ( x , y , g ( x , y )) 1 + ( ∂ x ∂ g  ) 2 + ( ∂ y ∂ g  ) 2  d x d y  
 
设 S S S   可参数化为 r ( u , v ) = ( x ( u , v ) , y ( u , v ) , z ( u , v ) ) ,   ( u , v ) ∈ D \bm{r}(u, v) = \bigl(x(u, v), y(u, v), z(u, v)\bigr),\, (u, v) \in D r ( u , v ) = ( x ( u , v ) , y ( u , v ) , z ( u , v ) ) , ( u , v ) ∈ D  ,且 r u ′ × r v ′ ≠ 0 \bm{r}_u' \boldsymbol{\times} \bm{r}_v' \neq \bm{0} r u ′  × r v ′   = 0  ,则
  d S = ∣ r u ′ × r v ′ ∣   d u   d v = ∣ r u ′ ∣ 2 ⋅ ∣ r v ′ ∣ 2 − ( r u ′ ⋅ r v ′ ) 2   d u   d v = E G − F 2   d u   d v \begin{aligned}
    \d S &= |\bm{r}_u' \boldsymbol{\times} \bm{r}_v'| \d u \d v\\
    &= \sqrt{|\bm{r}_u'|^2 \cdot |\bm{r}_v'|^2 - (\bm{r}_u' \boldsymbol{\cdot} \bm{r}_v')^2} \d u \d v\\
    &= \sqrt{EG - F^2} \d u \d v
\end{aligned}
 d S  = ∣ r u ′  × r v ′  ∣ d u d v = ∣ r u ′  ∣ 2 ⋅ ∣ r v ′  ∣ 2 − ( r u ′  ⋅ r v ′  ) 2  d u d v = EG − F 2  d u d v  
 
第二类曲面积分 
考虑光滑曲面。在 S S S   上取定一点 P 0 P_{0} P 0   ,那么 S S S   在 P 0 P_{0} P 0    点有两个方向相反的法向量。任意取定其中一个作为从 P 0 P_{0} P 0    点的出发方向,记作 n ( P 0 ) \bm{n}\left(P_{0}\right) n ( P 0  )  。
设一动点 P P P   从 P 0 P_{0} P 0    点出发,沿完全落在曲面 S S S   上的任何一条连续闭曲线 C C C   变动,再回到点 P 0 P_{0} P 0   ,如 S S S   是非闭的,还假设 C C C   不越过 S S S   的边界曲线。当点 P P P   在 C C C   上运动时,其法向量 n ( P ) \bm{n}(P) n ( P )   也随之连续变化,当点 P P P   返回到起始点 P 0 P_{0} P 0    时,n ( P ) \bm{n}(P) n ( P )   的指向没有发生改变 ,则称 S S S   为双侧曲面 。反之,称 S S S   为单侧曲面 。选好法向量(一侧)的曲面称为定向曲面。
为简便起见,仅讨论双侧曲面。并规定与 z z z   轴正向夹角为钝角的法向量为指向下方 ,同时该法向量确定的一侧为下侧 。
设一不可压缩流体经过曲面 S S S  ,其流速与时间 t t t   无关,仅与其点的位置 ( x , y , z ) ∈ S (x, y, z) \in S ( x , y , z ) ∈ S   有关,设为
v ( x , y , z ) = P ( x , y , z ) i + Q ( x , y , z ) j + R ( x , y , z ) k \bm{v}(x, y, z) = P(x, y, z) \bm{i} + Q(x, y, z) \bm{j} + R(x, y, z) \bm{k}
 v ( x , y , z ) = P ( x , y , z ) i + Q ( x , y , z ) j + R ( x , y , z ) k 
其中 P , Q , R P, Q, R P , Q , R   都在 S S S   上连续,则单位时间内流向 S S S   指定侧流体的质量为流量 Φ \Phi Φ  。
设 n \bm{n} n   为平面单位法向量,则有
Φ = lim  λ → 0 ∑ i = 1 n v i ⋅ n i Δ S i \begin{aligned}
    \Phi &= \lim_{\lambda \to 0} \sum_{i=1}^{n} \bm{v}_i \boldsymbol{\cdot} \bm{n}_i \Delta S_{i}\\
\end{aligned}
 Φ  = λ → 0 lim  i = 1 ∑ n  v i  ⋅ n i  Δ S i   
从而引入第二类曲面积分
设 S S S   为光滑的有向曲面,S S S   一侧单位法向量为 n ( P ) \bm{n}(P) n ( P )  ,F ( x , y , z ) \bm{F}(x, y, z) F ( x , y , z )   为定义在 S S S   上的一个向量函数。将 S S S   任意分成 n n n   块小区面 Δ S i \Delta S_i Δ S i   ,在 Δ S i \Delta S_i Δ S i    上任取一点 P i ( ξ i , η i , ζ i ) P_i(\xi_i, \eta_i, \zeta_i) P i  ( ξ i  , η i  , ζ i  )  ,若当各小块直径最大值 λ → 0 \lambda \to 0 λ → 0   时,和式
lim  λ → 0 ∑ i = 1 n F ( ξ i , η i , ζ i ) ⋅ n i Δ S i \lim_{\lambda \to 0} \sum_{i=1}^{n} \bm{F}\left(\xi_i, \eta_i, \zeta_i\right) \boldsymbol{\cdot} \bm{n}_i \Delta S_i
 λ → 0 lim  i = 1 ∑ n  F ( ξ i  , η i  , ζ i  ) ⋅ n i  Δ S i  
存在,且与 S S S   分割和 P i ( ξ i , η i , ζ i ) P_i(\xi_i, \eta_i, \zeta_i) P i  ( ξ i  , η i  , ζ i  )   的取法无关,则称此极限为函数 F ( x , y , z ) \bm{F}(x, y, z) F ( x , y , z )   在曲面 S S S   上的第二类曲面积分 ,记为
∬ S F ( x , y , z ) ⋅ n ( x , y , z )   d S \iint_S \bm{F}(x, y, z) \boldsymbol{\cdot} \bm{n}(x, y, z) \d S
 ∬ S  F ( x , y , z ) ⋅ n ( x , y , z ) d S 
或
∬ S F ⋅   d S \iint_S \bm{F} \boldsymbol{\cdot} \d \bm{S}
 ∬ S  F ⋅ d S 
设 n \bm{n} n   方向角为 α , β , γ \alpha, \beta, \gamma α , β , γ  ,则
∬ F ⋅ n   d S = ∬ ( P cos  α + Q cos  β + R cos  γ )   d S \iint \bm{F} \boldsymbol{\cdot} \bm{n} \d S = \iint (P \cos \alpha + Q \cos \beta + R \cos \gamma) \d S
 ∬ F ⋅ n d S = ∬ ( P cos α + Q cos β + R cos γ ) d S 
这也就是第二类曲面积分转化为第一类曲面积分的方法。
又注意到(例如第一个,可视为 S S S   在 y O z yOz y O z   平面的有向投影面积 )
{ cos  α   d S =   d y   d z cos  β   d S =   d z   d x cos  γ   d S =   d x   d y \left\lbrace\begin{aligned}
    \cos \alpha \d S &= \d y \d z\\
    \cos \beta \d S &= \d z \d x\\
    \cos \gamma \d S &= \d x \d y
\end{aligned}\right.
 ⎩ ⎨ ⎧  cos α d S cos β d S cos γ d S  = d y d z = d z d x = d x d y  
从而有
∬ F ⋅ n   d S = ∬ P   d y   d z + Q   d z   d x + R   d x   d y \iint \bm{F} \boldsymbol{\cdot} \bm{n} \d S = \boxed{\iint P \d y \d z + Q \d z \d x + R \d x \d y}
 ∬ F ⋅ n d S = ∬ P d y d z + Q d z d x + R d x d y  
因此第二类曲面积分也称为对坐标的曲面积分 。
设 S S S   为一有向曲面,其方程为
z = f ( x , y ) , ( x , y ) ∈ D x y z = f(x, y),\qquad (x, y) \in D_{xy}
 z = f ( x , y ) , ( x , y ) ∈ D x y  
且函数 f ( x , y ) f(x, y) f ( x , y )   在 D x y D_{xy} D x y    上连续可微。函数 P , Q , R P, Q, R P , Q , R   为定义在曲面 S S S   上的连续函数(即 P ( x , y , f ( x , y ) ) P\bigl(x, y, f(x, y)\bigr) P ( x , y , f ( x , y ) )   等),则有
∬ S P   d y   d z + Q   d z   d x + R   d x   d y = ± ∬ D x y ( − P ∂ f ∂ x − Q ∂ f ∂ y + R )   d x   d y \begin{aligned}
    \iint_S P \d y \d z + Q \d z \d x + R \d x \d y &= \boxed{
            \pm \iint_{D_{xy}} \left( -P \frac{\partial f}{\partial x} - Q \frac{\partial f}{\partial y} + R \right) \d x \d y
        }
\end{aligned}
 ∬ S  P d y d z + Q d z d x + R d x d y  = ± ∬ D x y   ( − P ∂ x ∂ f  − Q ∂ y ∂ f  + R ) d x d y   
其中正负号取决于曲面 S S S   的定向,法向量指向上侧时取正,反之取负 。
因为法向量 ( − ∂ f ∂ x , − ∂ f ∂ y , 1 ) \left( -\dfrac{\partial f}{\partial x}, -\dfrac{\partial f}{\partial y}, 1  \right) ( − ∂ x ∂ f  , − ∂ y ∂ f  , 1 )   的方向是指向上侧的(靠近 z z z   轴正方向一侧)。
另外换成 y = g ( z , x ) y = g(z, x) y = g ( z , x )   或 x = h ( y , z ) x = h(y, z) x = h ( y , z )   也是一样的,包括正负号的选取,不再赘写。
 
从而有推论
设 S S S   方程为 z = f ( x , y ) ,   ( x , y ) ∈ D x y z = f(x, y),\, (x, y) \in D_{xy} z = f ( x , y ) , ( x , y ) ∈ D x y   ,函数 f f f   在 D x y D_{xy} D x y    上连续可微,则
∬ S R ( x , y , z )   d x   d y = ± ∬ D x y R ( x , y , f ( x , y ) )   d x   d y \iint_S R(x, y, z) \d x \d y = \pm \iint_{D_{xy}} R\bigl(x, y, f(x, y)\bigr) \d x \d y
 ∬ S  R ( x , y , z ) d x d y = ± ∬ D x y   R ( x , y , f ( x , y ) ) d x d y 
 
对于参数方程,有
设 S S S   为一有向曲面,其参数方程为
{ x = x ( u , v ) y = y ( u , v ) z = z ( u , v ) , ( u , v ) ∈ D \left\lbrace\begin{aligned}
    x &= x(u, v) \\
    y &= y(u, v) \\
    z &= z(u, v)
\end{aligned}\right.,\qquad (u, v) \in D
 ⎩ ⎨ ⎧  x y z  = x ( u , v ) = y ( u , v ) = z ( u , v )  , ( u , v ) ∈ D 
且函数 x , y , z x, y, z x , y , z   在 D D D   上连续可微。函数 P , Q , R P, Q, R P , Q , R   为定义在曲面 S S S   上的连续函数,则有
∬ S P   d y   d z + Q   d z   d x + R   d x   d y = ± ∬ D ( P A + Q B + R C )   d u   d v \begin{aligned}
    \iint_S P \d y \d z + Q \d z \d x + R \d x \d y &= \boxed{
            \pm \iint_{D} (PA + QB + RC) \d u \d v
        }
\end{aligned}
 ∬ S  P d y d z + Q d z d x + R d x d y  = ± ∬ D  ( P A + QB + RC ) d u d v   
其中
{ A = D ( y , z ) D ( u , v ) B = D ( z , x ) D ( u , v ) C = D ( x , y ) D ( u , v ) \left\lbrace\begin{aligned}
    A &= \dfrac{D(y, z)}{D(u, v)} \\
    B &= \dfrac{D(z, x)}{D(u, v)} \\
    C &= \dfrac{D(x, y)}{D(u, v)}
\end{aligned}\right.
 ⎩ ⎨ ⎧  A B C  = D ( u , v ) D ( y , z )  = D ( u , v ) D ( z , x )  = D ( u , v ) D ( x , y )   
当 ( A , B , C ) (A, B, C) ( A , B , C )   方向与曲面 S S S   的定向一致时取正,反之取负。
 
高斯公式(Gauss 公式) 
高斯公式是格林公式的推广,也称为散度定理、奥式公式、奥斯特洛格拉德斯基-高斯公式(Ostrogradsky-Gauss 公式,奥-高公式)。
设空间闭区域 V V V   是由分片光滑的闭曲面 S S S   围成,函数 P , Q , R P, Q, R P , Q , R   在 V V V   上具有一阶连续偏导数,则有
∬ S P   d y   d z + Q   d z   d x + R   d x   d y = ∭ V ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z )   d V \iint_S P \d y \d z + Q \d z \d x + R \d x \d y = \iiint_V \left( \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \d V
 ∬ S  P d y d z + Q d z d x + R d x d y = ∭ V  ( ∂ x ∂ P  + ∂ y ∂ Q  + ∂ z ∂ R  ) d V 
或
∬ S ( P cos  α + Q cos  β + R cos  γ )   d S = ∭ V ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z )   d V \iint_S (P \cos \alpha + Q \cos \beta + R \cos \gamma) \d S = \iiint_V \left( \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \d V
 ∬ S  ( P cos α + Q cos β + R cos γ ) d S = ∭ V  ( ∂ x ∂ P  + ∂ y ∂ Q  + ∂ z ∂ R  ) d V 
这里 S S S   是 V V V   的边界曲面的外侧,α , β , γ \alpha, \beta, \gamma α , β , γ   是 S S S   在点 ( x , y , z ) (x, y, z) ( x , y , z )   处的法向量的方向角。
 
找规律 
猜测啊,n n n   重积分,有 x 1 , ⋯   , x n x_1, \cdots, x_n x 1  , ⋯ , x n    个变量,有
∫   ⋯ ∫ S ⏞ n − 1 ∑ i = 1 n f i ( x 1 , ⋯   , x n )   d x i + 1 ⋯   d x i − 1 = ∫   ⋯ ∫ V ⏞ n ∑ i = 1 n ∂ f i ∂ x i   d x i ⋯   d x i − 1 \overbrace{\int \dotsi \int_S}^{n-1} \sum_{i=1}^{n} f_i(x_1, \cdots, x_n) \boxed{\d x_{i+1}\cdots \d x_{i-1}} = \overbrace{\int \dotsi \int_V}^{n} \sum_{i=1}^{n} \dfrac{\partial f_i}{\partial x_i} \d x_i \cdots \d x_{i-1}
 ∫ ⋯ ∫ S   n − 1  i = 1 ∑ n  f i  ( x 1  , ⋯ , x n  ) d x i + 1  ⋯ d x i − 1   = ∫ ⋯ ∫ V   n  i = 1 ∑ n  ∂ x i  ∂ f i   d x i  ⋯ d x i − 1  
或
∫   ⋯ ∫ S ⏞ n − 1 ∑ i = 1 n f i ( x 1 , ⋯   , x n ) cos  θ i   d S = ∫   ⋯ ∫ V ⏞ n ∑ i = 1 n ∂ f i ∂ x i   d x i ⋯   d x i − 1 \overbrace{\int \dotsi \int_S}^{n-1} \sum_{i=1}^{n} f_i(x_1, \cdots, x_n) \cos \theta_i \d S = \overbrace{\int \dotsi \int_V}^{n} \sum_{i=1}^{n} \dfrac{\partial f_i}{\partial x_i} \d x_i \cdots \d x_{i-1}
 ∫ ⋯ ∫ S   n − 1  i = 1 ∑ n  f i  ( x 1  , ⋯ , x n  ) cos θ i  d S = ∫ ⋯ ∫ V   n  i = 1 ∑ n  ∂ x i  ∂ f i   d x i  ⋯ d x i − 1  
方框中的   d x i + 1 ⋯   d x i − 1 \d x_{i+1}\cdots \d x_{i-1} d x i + 1  ⋯ d x i − 1   ,意思是将   d x 1 , ⋯   ,   d x n \d x_1, \cdots, \d x_n d x 1  , ⋯ , d x n    形成一个环(即   d x n \d x_n d x n    下一个是   d x 1 \d x_1 d x 1   ),然后将   d x i \d x_i d x i    从环中拿出来,剩下的就是   d x i + 1 ⋯   d x i − 1 \d x_{i+1}\cdots \d x_{i-1} d x i + 1  ⋯ d x i − 1   。
还记得格林公式为
∫ C P   d x + Q   d y = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y )   d x   d y \int_C P \d x + Q \d y = \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \d x \d y
 ∫ C  P d x + Q d y = ∬ D  ( ∂ x ∂ Q  − ∂ y ∂ P  ) d x d y 
实际上就是
∫ C Q   d y + P   d x = ∬ D ∂ Q ∂ x   d x   d y + ∂ P ∂ y   d y   d x \int_C Q \d y + P \d x = \iint_D \dfrac{\partial Q}{\partial x}\d x \d y + \dfrac{\partial P}{\partial y} \d y \d x
 ∫ C  Q d y + P d x = ∬ D  ∂ x ∂ Q  d x d y + ∂ y ∂ P  d y d x 
只是戏言,辅助记忆的伎俩。
高斯定理证明懒得写了。
 
向量场 F \bm{F} F   的散度 (sàn dù, divergence)定义为
div  F = ∇ ⋅ F \operatorname{div} \bm{F} = \grad \boldsymbol{\cdot} \bm{F}
 div F = ∇ ⋅ F 
 
则高斯定理可写作
∯ S F ⋅   d S = ∭ V div  F   d V \oiint_S \bm{F} \boldsymbol{\cdot} \d \bm{S} = \iiint_V \operatorname{div} \bm{F} \d V
 ∬  S  F ⋅ d S = ∭ V  div F d V 
即向量场 F \bm{F} F   在闭曲面 S S S   上的通量,等于该向量场的散度在包围该闭曲面的体积 V V V   上的体积分。(S = ∂ V S = \partial V S = ∂ V  )
高斯公式中取 P = x , Q = y , R = z P = x, Q = y, R = z P = x , Q = y , R = z  ,则有
∬ S x   d y   d z + y   d z   d x + z   d x   d y = ∭ V 3   d V = 3 V \iint_S x \d y \d z + y \d z \d x + z \d x \d y = \iiint_V 3 \d V = 3 V
 ∬ S  x d y d z + y d z d x + z d x d y = ∭ V  3 d V = 3 V 
即
V = 1 3 ∬ ∂ V x   d y   d z + y   d z   d x + z   d x   d y = ∬ ∂ V x   d y   d z = ∬ ∂ V y   d z   d x = ∬ ∂ V z   d x   d y \begin{aligned}
    V &= \dfrac{1}{3} \iint_{\partial V} x \d y \d z + y \d z \d x + z \d x \d y\\
    &= \iint_{\partial V} x \d y \d z\\
    &= \iint_{\partial V} y \d z \d x\\
    &= \iint_{\partial V} z \d x \d y
\end{aligned}
 V  = 3 1  ∬ ∂ V  x d y d z + y d z d x + z d x d y = ∬ ∂ V  x d y d z = ∬ ∂ V  y d z d x = ∬ ∂ V  z d x d y  
斯托克斯公式(Stokes 公式) 
设 S S S   为分片光滑的有向曲面,其边界 Γ \Gamma Γ   为逐段光滑的有向闭曲线,Γ \Gamma Γ   正向与 S S S   正侧符合右手法则。函数 P , Q , R P, Q, R P , Q , R   在 S , Γ S, \Gamma S , Γ   上具有一阶连续偏导数,则有
∮ Γ P   d x + Q   d y + R   d z = ∬ S ( ∂ R ∂ y − ∂ Q ∂ z )   d y   d z + ( ∂ P ∂ z − ∂ R ∂ x )   d z   d x + ( ∂ Q ∂ x − ∂ P ∂ y )   d x   d y \oint_{\Gamma} P \d x + Q \d y + R \d z =\\  \iint_S \left( \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \d y \d z + \left( \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \d z \d x + \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \d x \d y
 ∮ Γ  P d x + Q d y + R d z = ∬ S  ( ∂ y ∂ R  − ∂ z ∂ Q  ) d y d z + ( ∂ z ∂ P  − ∂ x ∂ R  ) d z d x + ( ∂ x ∂ Q  − ∂ y ∂ P  ) d x d y 
 
记成
∬ S ( ∂ R ∂ y   d y   d z + ∂ Q ∂ z   d z   d y ) + ( ∂ P ∂ z   d z   d x + ∂ R ∂ x   d x   d z ) + ( ∂ Q ∂ x   d x   d y + ∂ P ∂ y   d y   d x ) \iint_S \left( \dfrac{\partial R}{\partial y}\d y \d z + \dfrac{\partial Q}{\partial z}\d z \d y \right) + \left( \dfrac{\partial P}{\partial z}\d z \d x + \dfrac{\partial R}{\partial x}\d x \d z \right) + \left( \dfrac{\partial Q}{\partial x}\d x \d y + \dfrac{\partial P}{\partial y}\d y \d x \right)
 ∬ S  ( ∂ y ∂ R  d y d z + ∂ z ∂ Q  d z d y ) + ( ∂ z ∂ P  d z d x + ∂ x ∂ R  d x d z ) + ( ∂ x ∂ Q  d x d y + ∂ y ∂ P  d y d x ) 
就行了。
或者
∮ Γ P   d x + Q   d y + R   d z = ∬ S ∣   d y   d z   d z   d x   d x   d y ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ = ∬ S ∣ cos  α cos  β cos  γ ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣   d S \begin{aligned}
    \oint_{\Gamma} P \d x + Q \d y + R \d z &= \iint_S \begin{vmatrix}
        \d y \d z & \d z \d x & \d x \d y \\
        \dfrac{\partial }{\partial x} & \dfrac{\partial }{\partial y} & \dfrac{\partial }{\partial z} \\
        P & Q & R
    \end{vmatrix}\\
    &= \iint_S \begin{vmatrix}
        \cos \alpha & \cos \beta & \cos \gamma \\
        \dfrac{\partial }{\partial x} & \dfrac{\partial }{\partial y} &\dfrac{\partial }{\partial z}  \\
        P & Q & R
    \end{vmatrix} \d S
\end{aligned}
 ∮ Γ  P d x + Q d y + R d z  = ∬ S   d y d z ∂ x ∂  P  d z d x ∂ y ∂  Q  d x d y ∂ z ∂  R   = ∬ S   cos α ∂ x ∂  P  cos β ∂ y ∂  Q  cos γ ∂ z ∂  R   d S  
其中 α , β , γ \alpha, \beta, \gamma α , β , γ   是 S S S   在点 ( x , y , z ) (x, y, z) ( x , y , z )   处的法向量的方向角。
 
证明 
未认真看
 
设 S S S   可参数化为 r ( u , v ) = ( x ( u , v ) , y ( u , v ) , z ( u , v ) ) , ( u , v ) ∈ D \bm{r}(u, v) = \bigl(x(u, v), y(u, v), z(u, v)\bigr),\quad (u, v) \in D r ( u , v ) = ( x ( u , v ) , y ( u , v ) , z ( u , v ) ) , ( u , v ) ∈ D  (如有必要可分割),不妨设 S S S   的方向与 r u ′ × r v ′ \bm{r}_u' \boldsymbol{\times} \bm{r}_v' r u ′  × r v ′    的方向一致。则
∮ Γ F ⋅   d r = ∮ Γ P   d x + Q   d y + R   d z = ∮ ∂ D P ( ∂ x ∂ u   d u + ∂ x ∂ v   d v ) + Q ( ∂ y ∂ u   d u + ∂ y ∂ v   d v ) + R ( ∂ z ∂ u   d u + ∂ z ∂ v   d v ) = ∮ ∂ D ( P ∂ x ∂ u + Q ∂ y ∂ u + R ∂ z ∂ u )   d u + ( P ∂ x ∂ v + Q ∂ y ∂ v + R ∂ z ∂ v )   d v = ∬ D [ − ∂ ∂ v ( P ∂ x ∂ u + Q ∂ y ∂ u + R ∂ z ∂ u ) + ∂ ∂ u ( P ∂ x ∂ v + Q ∂ y ∂ v + R ∂ z ∂ v ) ]   d u   d v = ∬ D [ − ( ∂ P ∂ v ∂ x ∂ u + ∂ Q ∂ v ∂ y ∂ u + ∂ R ∂ v ∂ z ∂ u ) + ( ∂ P ∂ u ∂ x ∂ v + ∂ Q ∂ u ∂ y ∂ v + ∂ R ∂ u ∂ z ∂ v ) ]   d u   d v = ∬ D [ − ( ∂ P ∂ x ∂ x ∂ v + ∂ P ∂ y ∂ y ∂ v + ∂ P ∂ z ∂ z ∂ v ) ∂ x ∂ u − ( ∂ Q ∂ x ∂ x ∂ v + ∂ Q ∂ y ∂ y ∂ v + ∂ Q ∂ z ∂ z ∂ v ) ∂ x ∂ u − ( ∂ R ∂ x ∂ x ∂ v + ∂ R ∂ y ∂ y ∂ v + ∂ R ∂ z ∂ z ∂ v ) ∂ z ∂ u + ( ∂ P ∂ x ∂ x ∂ u + ∂ P ∂ y ∂ y ∂ u + ∂ P ∂ z ∂ z ∂ u ) ∂ x ∂ v + ( ∂ Q ∂ x ∂ x ∂ u + ∂ Q ∂ y ∂ y ∂ u + ∂ Q ∂ z ∂ z ∂ u ) ∂ y ∂ v + ( ∂ R ∂ x ∂ x ∂ u + ∂ R ∂ y ∂ y ∂ u + ∂ R ∂ z ∂ z ∂ u ) ∂ z ∂ v ]   d u   d v = ∬ D [ ( ∂ Q ∂ x − ∂ P ∂ y ) D ( x , y ) D ( u , v ) + ( ∂ R ∂ y − ∂ Q ∂ z ) D ( y , z ) D ( u , v ) + ( ∂ P ∂ z − ∂ R ∂ x ) D ( z , x ) D ( u , v ) ]   d u   d v = ∬ D ( ∂ R ∂ y − ∂ Q ∂ z , ∂ P ∂ z − ∂ R ∂ x , ∂ Q ∂ x − ∂ P ∂ y ) ⋅ ( r u ′ × r v ′ )   d u   d v = ∬ D ( ∂ R ∂ y − ∂ Q ∂ z )   d y   d z + ( ∂ P ∂ z − ∂ R ∂ x )   d z   d x + ( ∂ Q ∂ x − ∂ P ∂ y )   d x   d y \begin{aligned}
    \oint_{\Gamma} \bm{F} \boldsymbol{\cdot} \d \bm{r} &= \oint_{\Gamma} P \d x + Q \d y + R \d z\\
    &= \oint_{\partial D} P\left( \dfrac{\partial x}{\partial u} \d u + \dfrac{\partial x}{\partial v}\d v \right) + Q\left( \dfrac{\partial y}{\partial u} \d u + \dfrac{\partial y}{\partial v}\d v \right) + R\left( \dfrac{\partial z}{\partial u} \d u + \dfrac{\partial z}{\partial v}\d v \right)\\
    &= \oint_{\partial D} \left(P \dfrac{\partial x}{\partial u} + Q \dfrac{\partial y}{\partial u} + R \dfrac{\partial z}{\partial u}\right) \d u + \left(P \dfrac{\partial x}{\partial v} + Q \dfrac{\partial y}{\partial v} + R \dfrac{\partial z}{\partial v}\right) \d v\\
    &= \iint_D \left[- \dfrac{\partial }{\partial v}\left(P \dfrac{\partial x}{\partial u} + Q \dfrac{\partial y}{\partial u} + R \dfrac{\partial z}{\partial u}\right) + \dfrac{\partial }{\partial u}\left(P \dfrac{\partial x}{\partial v} + Q \dfrac{\partial y}{\partial v} + R \dfrac{\partial z}{\partial v}\right)\right] \d u \d v\\
    &= \iint_D \left[- \left(\dfrac{\partial P}{\partial \\v} \dfrac{\partial x}{\partial u} + \dfrac{\partial Q}{\partial v} \dfrac{\partial y}{\partial u} + \dfrac{\partial R}{\partial v} \dfrac{\partial z}{\partial u}\right) + \left(\dfrac{\partial P}{\partial u} \dfrac{\partial x}{\partial v} + \dfrac{\partial Q}{\partial u} \dfrac{\partial y}{\partial v} + \dfrac{\partial R}{\partial u} \dfrac{\partial z}{\partial v}\right)\right] \d u \d v\\
    &= \iint_D \biggl[-\left(\dfrac{\partial P}{\partial x} \dfrac{\partial x}{\partial v} + \dfrac{\partial P}{\partial y} \dfrac{\partial y}{\partial v} + \dfrac{\partial P}{\partial z} \dfrac{\partial z}{\partial v}\right) \dfrac{\partial x}{\partial u} - \left(\dfrac{\partial Q}{\partial x} \dfrac{\partial x}{\partial v} + \dfrac{\partial Q}{\partial y} \dfrac{\partial y}{\partial v} + \dfrac{\partial Q}{\partial z} \dfrac{\partial z}{\partial v}\right) \dfrac{\partial x}{\partial u}- \left(\dfrac{\partial R}{\partial x} \dfrac{\partial x}{\partial v} + \dfrac{\partial R}{\partial y} \dfrac{\partial y}{\partial v} + \dfrac{\partial R}{\partial z} \dfrac{\partial z}{\partial v}\right) \dfrac{\partial z}{\partial u} + \\
    & \left(\dfrac{\partial P}{\partial x} \dfrac{\partial x}{\partial u} + \dfrac{\partial P}{\partial y} \dfrac{\partial y}{\partial u} + \dfrac{\partial P}{\partial z} \dfrac{\partial z}{\partial u}\right) \dfrac{\partial x}{\partial v} + \left(\dfrac{\partial Q}{\partial x} \dfrac{\partial x}{\partial u} + \dfrac{\partial Q}{\partial y} \dfrac{\partial y}{\partial u} + \dfrac{\partial Q}{\partial z} \dfrac{\partial z}{\partial u}\right) \dfrac{\partial y}{\partial v} + \left(\dfrac{\partial R}{\partial x} \dfrac{\partial x}{\partial u} + \dfrac{\partial R}{\partial y} \dfrac{\partial y}{\partial u} + \dfrac{\partial R}{\partial z} \dfrac{\partial z}{\partial u}\right) \dfrac{\partial z}{\partial v}\biggr] \d u \d v\\
    &= \iint_D \left[\left(\dfrac{\partial Q}{\partial x} - \dfrac{\partial P}{\partial y}\right) \dfrac{D(x, y)}{D(u, v)} + \left(\dfrac{\partial R}{\partial y} - \dfrac{\partial Q}{\partial z}\right) \dfrac{D(y, z)}{D(u, v)} + \left(\dfrac{\partial P}{\partial z} - \dfrac{\partial R}{\partial x}\right) \dfrac{D(z, x)}{D(u, v)}\right] \d u \d v\\
    &= \iint_D \left(\dfrac{\partial R}{\partial y} - \dfrac{\partial Q}{\partial z}, \dfrac{\partial P}{\partial z} - \dfrac{\partial R}{\partial x}, \dfrac{\partial Q}{\partial x} - \dfrac{\partial P}{\partial y}\right) \boldsymbol{\cdot} \left(\bm{r}_u' \boldsymbol{\times} \bm{r}_v'\right) \d u \d v\\
    &= \iint_D \left(\dfrac{\partial R}{\partial y} - \dfrac{\partial Q}{\partial z}\right) \d y \d z + \left(\dfrac{\partial P}{\partial z} - \dfrac{\partial R}{\partial x}\right) \d z \d x + \left(\dfrac{\partial Q}{\partial x} - \dfrac{\partial P}{\partial y}\right) \d x \d y
\end{aligned}
 ∮ Γ  F ⋅ d r  = ∮ Γ  P d x + Q d y + R d z = ∮ ∂ D  P ( ∂ u ∂ x  d u + ∂ v ∂ x  d v ) + Q ( ∂ u ∂ y  d u + ∂ v ∂ y  d v ) + R ( ∂ u ∂ z  d u + ∂ v ∂ z  d v ) = ∮ ∂ D  ( P ∂ u ∂ x  + Q ∂ u ∂ y  + R ∂ u ∂ z  ) d u + ( P ∂ v ∂ x  + Q ∂ v ∂ y  + R ∂ v ∂ z  ) d v = ∬ D  [ − ∂ v ∂  ( P ∂ u ∂ x  + Q ∂ u ∂ y  + R ∂ u ∂ z  ) + ∂ u ∂  ( P ∂ v ∂ x  + Q ∂ v ∂ y  + R ∂ v ∂ z  ) ] d u d v = ∬ D  [ − ( ∂ v ∂ P  ∂ u ∂ x  + ∂ v ∂ Q  ∂ u ∂ y  + ∂ v ∂ R  ∂ u ∂ z  ) + ( ∂ u ∂ P  ∂ v ∂ x  + ∂ u ∂ Q  ∂ v ∂ y  + ∂ u ∂ R  ∂ v ∂ z  ) ] d u d v = ∬ D  [ − ( ∂ x ∂ P  ∂ v ∂ x  + ∂ y ∂ P  ∂ v ∂ y  + ∂ z ∂ P  ∂ v ∂ z  ) ∂ u ∂ x  − ( ∂ x ∂ Q  ∂ v ∂ x  + ∂ y ∂ Q  ∂ v ∂ y  + ∂ z ∂ Q  ∂ v ∂ z  ) ∂ u ∂ x  − ( ∂ x ∂ R  ∂ v ∂ x  + ∂ y ∂ R  ∂ v ∂ y  + ∂ z ∂ R  ∂ v ∂ z  ) ∂ u ∂ z  + ( ∂ x ∂ P  ∂ u ∂ x  + ∂ y ∂ P  ∂ u ∂ y  + ∂ z ∂ P  ∂ u ∂ z  ) ∂ v ∂ x  + ( ∂ x ∂ Q  ∂ u ∂ x  + ∂ y ∂ Q  ∂ u ∂ y  + ∂ z ∂ Q  ∂ u ∂ z  ) ∂ v ∂ y  + ( ∂ x ∂ R  ∂ u ∂ x  + ∂ y ∂ R  ∂ u ∂ y  + ∂ z ∂ R  ∂ u ∂ z  ) ∂ v ∂ z  ] d u d v = ∬ D  [ ( ∂ x ∂ Q  − ∂ y ∂ P  ) D ( u , v ) D ( x , y )  + ( ∂ y ∂ R  − ∂ z ∂ Q  ) D ( u , v ) D ( y , z )  + ( ∂ z ∂ P  − ∂ x ∂ R  ) D ( u , v ) D ( z , x )  ] d u d v = ∬ D  ( ∂ y ∂ R  − ∂ z ∂ Q  , ∂ z ∂ P  − ∂ x ∂ R  , ∂ x ∂ Q  − ∂ y ∂ P  ) ⋅ ( r u ′  × r v ′  ) d u d v = ∬ D  ( ∂ y ∂ R  − ∂ z ∂ Q  ) d y d z + ( ∂ z ∂ P  − ∂ x ∂ R  ) d z d x + ( ∂ x ∂ Q  − ∂ y ∂ P  ) d x d y  
 
向量场 F \bm{F} F   的旋度 (curl)定义为
curl  F = ∇ × F \operatorname{curl} \bm{F} = \grad \boldsymbol{\times} \bm{F}
 curl F = ∇ × F 
也可记作 rot  F \operatorname{rot} \bm{F} rot F  (回转度,rotation)。
 
例如 F = P i + Q j + R k \bm{F} = P \bm{i} + Q \bm{j} + R \bm{k} F = P i + Q j + R k  ,则有
curl  F = ∇ × F = ( ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ) × ( P , Q , R ) = ( ∂ R ∂ y − ∂ Q ∂ z , ∂ P ∂ z − ∂ R ∂ x , ∂ Q ∂ x − ∂ P ∂ y ) = ( ∂ R ∂ y − ∂ Q ∂ z ) i + ( ∂ P ∂ z − ∂ R ∂ x ) j + ( ∂ Q ∂ x − ∂ P ∂ y ) k = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ \begin{aligned}
    \operatorname{curl} \bm{F} &= \grad \boldsymbol{\times} \bm{F}\\
    &= \left(\dfrac{\partial }{\partial x}, \dfrac{\partial }{\partial y}, \dfrac{\partial }{\partial z}\right) \boldsymbol{\times} (P, Q, R)\\
    &= \left(\dfrac{\partial R}{\partial y} - \dfrac{\partial Q}{\partial z}, \dfrac{\partial P}{\partial z} - \dfrac{\partial R}{\partial x}, \dfrac{\partial Q}{\partial x} - \dfrac{\partial P}{\partial y}\right)\\
    &= \left( \dfrac{\partial R}{\partial y} - \dfrac{\partial Q}{\partial z} \right) \bm{i} + \left( \dfrac{\partial P}{\partial z} - \dfrac{\partial R}{\partial x} \right) \bm{j} + \left( \dfrac{\partial Q}{\partial x} - \dfrac{\partial P}{\partial y} \right) \bm{k}\\
    &= \begin{vmatrix}
        \bm{i} & \bm{j} & \bm{k}\\
        \dfrac{\partial }{\partial x} & \dfrac{\partial }{\partial y} & \dfrac{\partial }{\partial z}\\
        P & Q & R
    \end{vmatrix}
\end{aligned}
 curl F  = ∇ × F = ( ∂ x ∂  , ∂ y ∂  , ∂ z ∂  ) × ( P , Q , R ) = ( ∂ y ∂ R  − ∂ z ∂ Q  , ∂ z ∂ P  − ∂ x ∂ R  , ∂ x ∂ Q  − ∂ y ∂ P  ) = ( ∂ y ∂ R  − ∂ z ∂ Q  ) i + ( ∂ z ∂ P  − ∂ x ∂ R  ) j + ( ∂ x ∂ Q  − ∂ y ∂ P  ) k =  i ∂ x ∂  P  j ∂ y ∂  Q  k ∂ z ∂  R    
 
则斯托克斯定理可写作
∮ Γ F ⋅   d r = ∬ S curl  F ⋅   d S \oint_{\Gamma} \bm{F} \boldsymbol{\cdot} \d \bm{r} = \iint_S \operatorname{curl} \bm{F} \boldsymbol{\cdot} \d \bm{S}
 ∮ Γ  F ⋅ d r = ∬ S  curl F ⋅ d S 
即向量场 F \bm{F} F   沿闭曲线 Γ \Gamma Γ   的环量,等于该向量场的旋度在该闭曲线围成的曲面 S S S   上的通量。(Γ = ∂ S \Gamma = \partial S Γ = ∂ S  )
空间曲线积分与路径无关的条件 
设 V V V   为单连通区域,P , Q , R P, Q, R P , Q , R   在 V V V   内具有一阶连续偏导数,则空间曲线积分
∫ C P   d x + Q   d y + R   d z \int_C P \d x + Q \d y + R \d z
 ∫ C  P d x + Q d y + R d z 
在 V V V   内与路径无关的充要条件是
{ ∂ R ∂ y = ∂ Q ∂ z ∂ P ∂ z = ∂ R ∂ x ∂ Q ∂ x = ∂ P ∂ y \left\lbrace\begin{aligned}
    \dfrac{\partial R}{\partial y} &= \dfrac{\partial Q}{\partial z} \\
    \dfrac{\partial P}{\partial z} &= \dfrac{\partial R}{\partial x} \\
    \dfrac{\partial Q}{\partial x} &= \dfrac{\partial P}{\partial y}
\end{aligned}\right.
 ⎩ ⎨ ⎧  ∂ y ∂ R  ∂ z ∂ P  ∂ x ∂ Q   = ∂ z ∂ Q  = ∂ x ∂ R  = ∂ y ∂ P   
在 V V V   内恒成立。
 
类似地,有:
设空间区域 V V V   是单连通区域,函数 P , Q , R P, Q, R P , Q , R   在 V V V   内具有一阶连续偏导数,则满足上面的条件,等价于存在 V V V   内的可微函数 u ( x , y , z ) u(x, y, z) u ( x , y , z )   使得
  d u = P   d x + Q   d y + R   d z \d u = P \d x + Q \d y + R \d z
 d u = P d x + Q d y + R d z 
且
u ( x , y , z ) = ∫ ( x 0 , y 0 , z 0 ) ( x , y , z ) P   d x + Q   d y + R   d z u(x, y, z) = \int_{(x_0, y_0, z_0)}^{(x, y, z)} P \d x + Q \d y + R \d z
 u ( x , y , z ) = ∫ ( x 0  , y 0  , z 0  ) ( x , y , z )  P d x + Q d y + R d z 
场论初步 
数量场 
f   : R n → R f \colon \R^n \to \R
 f : R n → R 
向量场 
f   : R n → R n \bm{f} \colon \R^n \to \R^n
 f : R n → R n 
依赖于时间的场称为不定长场 或不稳定场 ,不依赖于时间的场称为定长场 或稳定场 。
对于数量场,我们有梯度、散度、旋度等概念。
数量场 f ( x , y , z ) f(x, y, z) f ( x , y , z )   有等值面 f ( x , y , z ) = c f(x, y, z) = c f ( x , y , z ) = c  。
梯度、旋度、散度之前都介绍过了,这里整合一下。
梯度 
∇ f = (   ∂ f   ∂ x ,   ∂ f   ∂ y ,   ∂ f   ∂ z ) \grad f = \left( \dfrac{\pd f}{\pd x}, \dfrac{\pd f}{\pd y}, \dfrac{\pd f}{\pd z} \right)
 ∇ f = ( ∂ x ∂ f  , ∂ y ∂ f  , ∂ z ∂ f  ) 
称为函数 f ( x , y , z ) f(x, y, z) f ( x , y , z )   的梯度 (gradient),记作 ∇ f \grad f ∇ f   或 grad  f \operatorname{grad} f grad f   或   ∂ f   ∂ x i +   ∂ f   ∂ y j +   ∂ f   ∂ z k \dfrac{\pd f}{\pd x} \bm{i} + \dfrac{\pd f}{\pd y} \bm{j} + \dfrac{\pd f}{\pd z} \bm{k} ∂ x ∂ f  i + ∂ y ∂ f  j + ∂ z ∂ f  k  。
 
Δ = ∇ ⋅ ∇ =   ∂ 2   ∂ x 2 +   ∂ 2   ∂ y 2 +   ∂ 2   ∂ z 2 \Delta = \grad \boldsymbol{\cdot} \grad = \dfrac{\pd^2}{\pd x^2} + \dfrac{\pd^2}{\pd y^2} + \dfrac{\pd^2}{\pd z^2}
 Δ = ∇ ⋅ ∇ = ∂ x 2 ∂ 2  + ∂ y 2 ∂ 2  + ∂ z 2 ∂ 2  
称为拉普拉斯算子 (Laplace operator)。
 
∇ C = 0 \grad C = \bm{0} ∇ C = 0  
∇ ( u ± v ) = ∇ u + ∇ v \grad (u \pm v) = \grad u + \grad v ∇ ( u ± v ) = ∇ u + ∇ v  
∇ ( u v ) = u ∇ v + v ∇ u \grad (uv) = u \grad v + v \grad u ∇ ( uv ) = u ∇ v + v ∇ u  
∇ ( u v ) = v ∇ u − u ∇ v v 2 \grad \left( \dfrac{u}{v} \right) = \dfrac{v \grad u - u \grad v}{v^2} ∇ ( v u  ) = v 2 v ∇ u − u ∇ v   
∇ φ ( u ) = φ ′ ( u ) ∇ u \grad \varphi(u) = \varphi'(u) \grad u ∇ φ ( u ) = φ ′ ( u ) ∇ u  
∇ φ ( u , v ) = ∂ φ ∂ u ∇ u + ∂ φ ∂ v ∇ v \grad \varphi(u, v) = \dfrac{\partial \varphi}{\partial u} \grad u + \dfrac{\partial \varphi}{\partial v} \grad v ∇ φ ( u , v ) = ∂ u ∂ φ  ∇ u + ∂ v ∂ φ  ∇ v  
 
 
散度 
向量场 A \bm{A} A   通过曲面 S S S   指定侧的流量(通量)定义为
Φ = ∬ S A   d S \Phi = \iint_S \bm{A} \d \bm{S}
 Φ = ∬ S  A d S 
向量场 A \bm{A} A   的散度 (divergence)定义为
div  A ( M 0 ) = lim  Ω → M 0 ∬ ∂ Ω A   d S ∭ Ω   d x   d y   d z \operatorname{div} \bm{A}(M_0) = \lim_{\Omega \to M_0} \dfrac{\displaystyle \iint_{\partial \Omega} \bm{A} \d \bm{S}}{\displaystyle \iiint_{\Omega}\d x \d y \d z}
 div A ( M 0  ) = Ω → M 0  lim  ∭ Ω  d x d y d z ∬ ∂ Ω  A d S  
即
div  A = ∇ ⋅ A \operatorname{div} \bm{A} = \grad \boldsymbol{\cdot} \bm{A}
 div A = ∇ ⋅ A 
 
若散度在一点大于零 ,表明在该点附近流向该点的量少于该点流出的量,称该点为「源」,若散度在一点处小于零 ,则表明在该点附近流向该点的量多于自该点流出的量,称该点为「漏」。
若向量场 A \bm{A} A   散度 div  A \operatorname{div} \bm{A} div A   处处为零,则称 A \bm{A} A   为无源场 (管型场)。
div  ( λ A ) = λ div  A \operatorname{div}(\lambda \bm{A}) = \lambda \operatorname{div} \bm{A} div ( λ A ) = λ div A  
div  ( A 1 ± A 2 ) = div  A 1 ± div  A 2 \operatorname{div}(\bm{A}_1 \pm \bm{A}_2) = \operatorname{div} \bm{A}_1 \pm \operatorname{div} \bm{A}_2 div ( A 1  ± A 2  ) = div A 1  ± div A 2   
div  ( φ A ) = φ div  A + A ⋅ ∇ φ \operatorname{div} (\varphi \bm{A}) = \varphi \operatorname{div} \bm{A} + \bm{A} \boldsymbol{\cdot} \grad \varphi div ( φ A ) = φ div A + A ⋅ ∇ φ  (φ \varphi φ   为数量场) 
div  ( ∇ φ ) = Δ φ \operatorname{div}(\grad \varphi) = \Delta \varphi div ( ∇ φ ) = Δ φ  
 
 
旋度 
向量场 A \bm{A} A   沿曲线 C C C   的环流量定义为
I = ∮ C A ⋅   d r I = \oint_C \bm{A} \boldsymbol{\cdot} \d \bm{r}
 I = ∮ C  A ⋅ d r 
向量场 A \bm{A} A   的旋度 (curl)定义为
curl  A = ∇ × A \operatorname{curl} \bm{A} = \grad \boldsymbol{\times} \bm{A}
 curl A = ∇ × A 
也可记作 rot  A \operatorname{rot} \bm{A} rot A  (回转度,rotation)。
 
物理含义是,流速场 A \bm{A} A   沿闭曲线 C C C   整体上看是否旋转。
rot  ( λ A ) = λ rot  A \operatorname{rot} (\lambda \bm{A}) = \lambda \operatorname{rot} \bm{A} rot ( λ A ) = λ rot A  
rot  ( A 1 ± A 2 ) = rot  A 1 ± rot  A 2 \operatorname{rot} (\bm{A}_1 \pm \bm{A}_2) = \operatorname{rot} \bm{A}_1 \pm \operatorname{rot} \bm{A}_2 rot ( A 1  ± A 2  ) = rot A 1  ± rot A 2   
rot  ( φ A ) = φ rot  A + ∇ φ × A \operatorname{rot} (\varphi \bm{A}) = \varphi \operatorname{rot} \bm{A} + \grad \varphi \boldsymbol{\times} \bm{A} rot ( φ A ) = φ rot A + ∇ φ × A  (φ \varphi φ   为数量场) 
div  ( A × B ) = B ⋅ rot  A − A ⋅ rot  B \operatorname{div}(\bm{A} \boldsymbol{\times} \bm{B}) = \bm{B} \boldsymbol{\cdot} \operatorname{rot} \bm{A} - \bm{A} \boldsymbol{\cdot} \operatorname{rot} \bm{B} div ( A × B ) = B ⋅ rot A − A ⋅ rot B  
rot  ( ∇ φ ) = 0 \operatorname{rot}(\grad \varphi) = \bm{0} rot ( ∇ φ ) = 0  
div  ( rot  A ) = 0 \operatorname{div}(\operatorname{rot} \bm{A}) = 0 div ( rot A ) = 0  
 
 
有势场 
若向量场 A \bm{A} A   可表示为某个数量场 φ \varphi φ   的梯度,即 A = ∇ φ \bm{A} = \grad \varphi A = ∇ φ  ,则称 A \bm{A} A   为有势场 (位势场、保守场,potential field)。
 
向量场 A \bm{A} A   为有势场的充要条件 为 rot  A = 0 \operatorname{rot} \bm{A} = \bm{0} rot A = 0  。
若向量场 A \bm{A} A   旋度处处为零,则称向量场 A \bm{A} A   为无旋场 。则有势场为无旋场。
若向量场 A \bm{A} A   既是无源场又是无旋场,则称 A \bm{A} A   为调和场 。
调和场 A \bm{A} A   的势函数 f ( x , y , z ) f(x, y, z) f ( x , y , z )   满足拉普拉斯方程 
Δ f = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 + ∂ 2 f ∂ z 2 = 0 \Delta f = \dfrac{\partial^2 f}{\partial x^2} + \dfrac{\partial^2 f}{\partial y^2} + \dfrac{\partial^2 f}{\partial z^2} = 0
 Δ f = ∂ x 2 ∂ 2 f  + ∂ y 2 ∂ 2 f  + ∂ z 2 ∂ 2 f  = 0