第一类曲面积分
设曲面 S S S 是光滑的,函数 f ( x , y , z ) f(x, y, z) f ( x , y , z ) 在 S S S 上有定义,将 S S S 任意分为 n n n 小块 Δ S i ( i = 1 , 2 , ⋯ , n ) \Delta S_{i}(i=1,2, \cdots, n) Δ S i ( i = 1 , 2 , ⋯ , n ) ,Δ S i \Delta S_{i} Δ S i 同时也表示这个小的曲面面积。
令 λ = max 1 ⩽ i ⩽ n { d ( Δ S i ) } \lambda=\max\limits_{1 \le i \le n}\left\{d(\Delta S_{i})\right\} λ = 1 ⩽ i ⩽ n max { d ( Δ S i ) } 。在 Δ S i \Delta S_{i} Δ S i 上任取一点 ( ξ i , η i , ζ i ) \left(\xi_{i}, \eta_{i}, \zeta_{i}\right) ( ξ i , η i , ζ i ) ,作乘积 f ( ξ i , η i , ζ i ) Δ S i f\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta S_{i} f ( ξ i , η i , ζ i ) Δ S i ,并作和 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ S i \displaystyle \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta S_{i} i = 1 ∑ n f ( ξ i , η i , ζ i ) Δ S i 。
如果当 λ → 0 \lambda \to 0 λ → 0 时,这个和式的极限总存在(且与曲面 S S S 的分割和点 ( ξ i , η i , ζ i ) \left(\xi_{i}, \eta_{i}, \zeta_{i}\right) ( ξ i , η i , ζ i ) 的取法无关),则称此极限为函数 f ( x , y , z ) f(x, y, z) f ( x , y , z ) 在曲面 S S S 上的第一类曲面积分 或对面积的曲面积分 ,记为
∬ S f ( x , y , z ) d S \iint_S f(x, y, z) \d S
∬ S f ( x , y , z ) d S
设 S S S 可参数化为 r ( x , y ) = ( x , y , g ( x , y ) ) , ( x , y ) ∈ D \bm{r}(x, y) = (x, y, g(x, y)),\, (x, y) \in D r ( x , y ) = ( x , y , g ( x , y )) , ( x , y ) ∈ D ,且 g g g 在 D D D 上连续可微,则
d S = ∣ r x ′ × r y ′ ∣ d x d y = ∣ ( 1 , 0 , ∂ g ∂ x ) × ( 0 , 1 , ∂ g ∂ y ) ∣ d x d y = ∣ ( − ∂ g ∂ x , − ∂ g ∂ y , 1 ) ∣ d x d y = 1 + ( ∂ g ∂ x ) 2 + ( ∂ g ∂ y ) 2 d x d y \begin{aligned}
\d S &= |\bm{r}_x' \boldsymbol{\times} \bm{r}_y'| \d x \d y\\
&= \left|\left(1, 0, \dfrac{\partial g}{\partial x}\right) \boldsymbol{\times} \left(0, 1, \dfrac{\partial g}{\partial y}\right)\right| \d x \d y\\
&= \left\lvert \left( -\dfrac{\partial g}{\partial x}, -\dfrac{\partial g}{\partial y}, 1 \right) \right\rvert \d x \d y\\
&= \sqrt{1 + \left(\frac{\partial g}{\partial x}\right)^2 + \left(\frac{\partial g}{\partial y}\right)^2} \d x \d y
\end{aligned}
d S = ∣ r x ′ × r y ′ ∣ d x d y = ( 1 , 0 , ∂ x ∂ g ) × ( 0 , 1 , ∂ y ∂ g ) d x d y = ( − ∂ x ∂ g , − ∂ y ∂ g , 1 ) d x d y = 1 + ( ∂ x ∂ g ) 2 + ( ∂ y ∂ g ) 2 d x d y
则
∬ S f ( x , y , z ) d S = ∬ D f ( x , y , g ( x , y ) ) 1 + ( ∂ g ∂ x ) 2 + ( ∂ g ∂ y ) 2 d x d y \iint_S f(x, y, z) \d S =\\ \boxed{\iint_D f(x, y, g(x, y)) \sqrt{1 + \left(\frac{\partial g}{\partial x}\right)^2 + \left(\frac{\partial g}{\partial y}\right)^2} \d x \d y}
∬ S f ( x , y , z ) d S = ∬ D f ( x , y , g ( x , y )) 1 + ( ∂ x ∂ g ) 2 + ( ∂ y ∂ g ) 2 d x d y
设 S S S 可参数化为 r ( u , v ) = ( x ( u , v ) , y ( u , v ) , z ( u , v ) ) , ( u , v ) ∈ D \bm{r}(u, v) = \bigl(x(u, v), y(u, v), z(u, v)\bigr),\, (u, v) \in D r ( u , v ) = ( x ( u , v ) , y ( u , v ) , z ( u , v ) ) , ( u , v ) ∈ D ,且 r u ′ × r v ′ ≠ 0 \bm{r}_u' \boldsymbol{\times} \bm{r}_v' \neq \bm{0} r u ′ × r v ′ = 0 ,则
d S = ∣ r u ′ × r v ′ ∣ d u d v = ∣ r u ′ ∣ 2 ⋅ ∣ r v ′ ∣ 2 − ( r u ′ ⋅ r v ′ ) 2 d u d v = E G − F 2 d u d v \begin{aligned}
\d S &= |\bm{r}_u' \boldsymbol{\times} \bm{r}_v'| \d u \d v\\
&= \sqrt{|\bm{r}_u'|^2 \cdot |\bm{r}_v'|^2 - (\bm{r}_u' \boldsymbol{\cdot} \bm{r}_v')^2} \d u \d v\\
&= \sqrt{EG - F^2} \d u \d v
\end{aligned}
d S = ∣ r u ′ × r v ′ ∣ d u d v = ∣ r u ′ ∣ 2 ⋅ ∣ r v ′ ∣ 2 − ( r u ′ ⋅ r v ′ ) 2 d u d v = EG − F 2 d u d v
第二类曲面积分
考虑光滑曲面。在 S S S 上取定一点 P 0 P_{0} P 0 ,那么 S S S 在 P 0 P_{0} P 0 点有两个方向相反的法向量。任意取定其中一个作为从 P 0 P_{0} P 0 点的出发方向,记作 n ( P 0 ) \bm{n}\left(P_{0}\right) n ( P 0 ) 。
设一动点 P P P 从 P 0 P_{0} P 0 点出发,沿完全落在曲面 S S S 上的任何一条连续闭曲线 C C C 变动,再回到点 P 0 P_{0} P 0 ,如 S S S 是非闭的,还假设 C C C 不越过 S S S 的边界曲线。当点 P P P 在 C C C 上运动时,其法向量 n ( P ) \bm{n}(P) n ( P ) 也随之连续变化,当点 P P P 返回到起始点 P 0 P_{0} P 0 时,n ( P ) \bm{n}(P) n ( P ) 的指向没有发生改变 ,则称 S S S 为双侧曲面 。反之,称 S S S 为单侧曲面 。选好法向量(一侧)的曲面称为定向曲面。
为简便起见,仅讨论双侧曲面。并规定与 z z z 轴正向夹角为钝角的法向量为指向下方 ,同时该法向量确定的一侧为下侧 。
设一不可压缩流体经过曲面 S S S ,其流速与时间 t t t 无关,仅与其点的位置 ( x , y , z ) ∈ S (x, y, z) \in S ( x , y , z ) ∈ S 有关,设为
v ( x , y , z ) = P ( x , y , z ) i + Q ( x , y , z ) j + R ( x , y , z ) k \bm{v}(x, y, z) = P(x, y, z) \bm{i} + Q(x, y, z) \bm{j} + R(x, y, z) \bm{k}
v ( x , y , z ) = P ( x , y , z ) i + Q ( x , y , z ) j + R ( x , y , z ) k
其中 P , Q , R P, Q, R P , Q , R 都在 S S S 上连续,则单位时间内流向 S S S 指定侧流体的质量为流量 Φ \Phi Φ 。
设 n \bm{n} n 为平面单位法向量,则有
Φ = lim λ → 0 ∑ i = 1 n v i ⋅ n i Δ S i \begin{aligned}
\Phi &= \lim_{\lambda \to 0} \sum_{i=1}^{n} \bm{v}_i \boldsymbol{\cdot} \bm{n}_i \Delta S_{i}\\
\end{aligned}
Φ = λ → 0 lim i = 1 ∑ n v i ⋅ n i Δ S i
从而引入第二类曲面积分
设 S S S 为光滑的有向曲面,S S S 一侧单位法向量为 n ( P ) \bm{n}(P) n ( P ) ,F ( x , y , z ) \bm{F}(x, y, z) F ( x , y , z ) 为定义在 S S S 上的一个向量函数。将 S S S 任意分成 n n n 块小区面 Δ S i \Delta S_i Δ S i ,在 Δ S i \Delta S_i Δ S i 上任取一点 P i ( ξ i , η i , ζ i ) P_i(\xi_i, \eta_i, \zeta_i) P i ( ξ i , η i , ζ i ) ,若当各小块直径最大值 λ → 0 \lambda \to 0 λ → 0 时,和式
lim λ → 0 ∑ i = 1 n F ( ξ i , η i , ζ i ) ⋅ n i Δ S i \lim_{\lambda \to 0} \sum_{i=1}^{n} \bm{F}\left(\xi_i, \eta_i, \zeta_i\right) \boldsymbol{\cdot} \bm{n}_i \Delta S_i
λ → 0 lim i = 1 ∑ n F ( ξ i , η i , ζ i ) ⋅ n i Δ S i
存在,且与 S S S 分割和 P i ( ξ i , η i , ζ i ) P_i(\xi_i, \eta_i, \zeta_i) P i ( ξ i , η i , ζ i ) 的取法无关,则称此极限为函数 F ( x , y , z ) \bm{F}(x, y, z) F ( x , y , z ) 在曲面 S S S 上的第二类曲面积分 ,记为
∬ S F ( x , y , z ) ⋅ n ( x , y , z ) d S \iint_S \bm{F}(x, y, z) \boldsymbol{\cdot} \bm{n}(x, y, z) \d S
∬ S F ( x , y , z ) ⋅ n ( x , y , z ) d S
或
∬ S F ⋅ d S \iint_S \bm{F} \boldsymbol{\cdot} \d \bm{S}
∬ S F ⋅ d S
设 n \bm{n} n 方向角为 α , β , γ \alpha, \beta, \gamma α , β , γ ,则
∬ F ⋅ n d S = ∬ ( P cos α + Q cos β + R cos γ ) d S \iint \bm{F} \boldsymbol{\cdot} \bm{n} \d S = \iint (P \cos \alpha + Q \cos \beta + R \cos \gamma) \d S
∬ F ⋅ n d S = ∬ ( P cos α + Q cos β + R cos γ ) d S
这也就是第二类曲面积分转化为第一类曲面积分的方法。
又注意到(例如第一个,可视为 S S S 在 y O z yOz y O z 平面的有向投影面积 )
{ cos α d S = d y d z cos β d S = d z d x cos γ d S = d x d y \left\lbrace\begin{aligned}
\cos \alpha \d S &= \d y \d z\\
\cos \beta \d S &= \d z \d x\\
\cos \gamma \d S &= \d x \d y
\end{aligned}\right.
⎩ ⎨ ⎧ cos α d S cos β d S cos γ d S = d y d z = d z d x = d x d y
从而有
∬ F ⋅ n d S = ∬ P d y d z + Q d z d x + R d x d y \iint \bm{F} \boldsymbol{\cdot} \bm{n} \d S = \boxed{\iint P \d y \d z + Q \d z \d x + R \d x \d y}
∬ F ⋅ n d S = ∬ P d y d z + Q d z d x + R d x d y
因此第二类曲面积分也称为对坐标的曲面积分 。
设 S S S 为一有向曲面,其方程为
z = f ( x , y ) , ( x , y ) ∈ D x y z = f(x, y),\qquad (x, y) \in D_{xy}
z = f ( x , y ) , ( x , y ) ∈ D x y
且函数 f ( x , y ) f(x, y) f ( x , y ) 在 D x y D_{xy} D x y 上连续可微。函数 P , Q , R P, Q, R P , Q , R 为定义在曲面 S S S 上的连续函数(即 P ( x , y , f ( x , y ) ) P\bigl(x, y, f(x, y)\bigr) P ( x , y , f ( x , y ) ) 等),则有
∬ S P d y d z + Q d z d x + R d x d y = ± ∬ D x y ( − P ∂ f ∂ x − Q ∂ f ∂ y + R ) d x d y \begin{aligned}
\iint_S P \d y \d z + Q \d z \d x + R \d x \d y &= \boxed{
\pm \iint_{D_{xy}} \left( -P \frac{\partial f}{\partial x} - Q \frac{\partial f}{\partial y} + R \right) \d x \d y
}
\end{aligned}
∬ S P d y d z + Q d z d x + R d x d y = ± ∬ D x y ( − P ∂ x ∂ f − Q ∂ y ∂ f + R ) d x d y
其中正负号取决于曲面 S S S 的定向,法向量指向上侧时取正,反之取负 。
因为法向量 ( − ∂ f ∂ x , − ∂ f ∂ y , 1 ) \left( -\dfrac{\partial f}{\partial x}, -\dfrac{\partial f}{\partial y}, 1 \right) ( − ∂ x ∂ f , − ∂ y ∂ f , 1 ) 的方向是指向上侧的(靠近 z z z 轴正方向一侧)。
另外换成 y = g ( z , x ) y = g(z, x) y = g ( z , x ) 或 x = h ( y , z ) x = h(y, z) x = h ( y , z ) 也是一样的,包括正负号的选取,不再赘写。
从而有推论
设 S S S 方程为 z = f ( x , y ) , ( x , y ) ∈ D x y z = f(x, y),\, (x, y) \in D_{xy} z = f ( x , y ) , ( x , y ) ∈ D x y ,函数 f f f 在 D x y D_{xy} D x y 上连续可微,则
∬ S R ( x , y , z ) d x d y = ± ∬ D x y R ( x , y , f ( x , y ) ) d x d y \iint_S R(x, y, z) \d x \d y = \pm \iint_{D_{xy}} R\bigl(x, y, f(x, y)\bigr) \d x \d y
∬ S R ( x , y , z ) d x d y = ± ∬ D x y R ( x , y , f ( x , y ) ) d x d y
对于参数方程,有
设 S S S 为一有向曲面,其参数方程为
{ x = x ( u , v ) y = y ( u , v ) z = z ( u , v ) , ( u , v ) ∈ D \left\lbrace\begin{aligned}
x &= x(u, v) \\
y &= y(u, v) \\
z &= z(u, v)
\end{aligned}\right.,\qquad (u, v) \in D
⎩ ⎨ ⎧ x y z = x ( u , v ) = y ( u , v ) = z ( u , v ) , ( u , v ) ∈ D
且函数 x , y , z x, y, z x , y , z 在 D D D 上连续可微。函数 P , Q , R P, Q, R P , Q , R 为定义在曲面 S S S 上的连续函数,则有
∬ S P d y d z + Q d z d x + R d x d y = ± ∬ D ( P A + Q B + R C ) d u d v \begin{aligned}
\iint_S P \d y \d z + Q \d z \d x + R \d x \d y &= \boxed{
\pm \iint_{D} (PA + QB + RC) \d u \d v
}
\end{aligned}
∬ S P d y d z + Q d z d x + R d x d y = ± ∬ D ( P A + QB + RC ) d u d v
其中
{ A = D ( y , z ) D ( u , v ) B = D ( z , x ) D ( u , v ) C = D ( x , y ) D ( u , v ) \left\lbrace\begin{aligned}
A &= \dfrac{D(y, z)}{D(u, v)} \\
B &= \dfrac{D(z, x)}{D(u, v)} \\
C &= \dfrac{D(x, y)}{D(u, v)}
\end{aligned}\right.
⎩ ⎨ ⎧ A B C = D ( u , v ) D ( y , z ) = D ( u , v ) D ( z , x ) = D ( u , v ) D ( x , y )
当 ( A , B , C ) (A, B, C) ( A , B , C ) 方向与曲面 S S S 的定向一致时取正,反之取负。
高斯公式(Gauss 公式)
高斯公式是格林公式的推广,也称为散度定理、奥式公式、奥斯特洛格拉德斯基-高斯公式(Ostrogradsky-Gauss 公式,奥-高公式)。
设空间闭区域 V V V 是由分片光滑的闭曲面 S S S 围成,函数 P , Q , R P, Q, R P , Q , R 在 V V V 上具有一阶连续偏导数,则有
∬ S P d y d z + Q d z d x + R d x d y = ∭ V ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d V \iint_S P \d y \d z + Q \d z \d x + R \d x \d y = \iiint_V \left( \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \d V
∬ S P d y d z + Q d z d x + R d x d y = ∭ V ( ∂ x ∂ P + ∂ y ∂ Q + ∂ z ∂ R ) d V
或
∬ S ( P cos α + Q cos β + R cos γ ) d S = ∭ V ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d V \iint_S (P \cos \alpha + Q \cos \beta + R \cos \gamma) \d S = \iiint_V \left( \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \d V
∬ S ( P cos α + Q cos β + R cos γ ) d S = ∭ V ( ∂ x ∂ P + ∂ y ∂ Q + ∂ z ∂ R ) d V
这里 S S S 是 V V V 的边界曲面的外侧,α , β , γ \alpha, \beta, \gamma α , β , γ 是 S S S 在点 ( x , y , z ) (x, y, z) ( x , y , z ) 处的法向量的方向角。
找规律
猜测啊,n n n 重积分,有 x 1 , ⋯ , x n x_1, \cdots, x_n x 1 , ⋯ , x n 个变量,有
∫ ⋯ ∫ S ⏞ n − 1 ∑ i = 1 n f i ( x 1 , ⋯ , x n ) d x i + 1 ⋯ d x i − 1 = ∫ ⋯ ∫ V ⏞ n ∑ i = 1 n ∂ f i ∂ x i d x i ⋯ d x i − 1 \overbrace{\int \dotsi \int_S}^{n-1} \sum_{i=1}^{n} f_i(x_1, \cdots, x_n) \boxed{\d x_{i+1}\cdots \d x_{i-1}} = \overbrace{\int \dotsi \int_V}^{n} \sum_{i=1}^{n} \dfrac{\partial f_i}{\partial x_i} \d x_i \cdots \d x_{i-1}
∫ ⋯ ∫ S n − 1 i = 1 ∑ n f i ( x 1 , ⋯ , x n ) d x i + 1 ⋯ d x i − 1 = ∫ ⋯ ∫ V n i = 1 ∑ n ∂ x i ∂ f i d x i ⋯ d x i − 1
或
∫ ⋯ ∫ S ⏞ n − 1 ∑ i = 1 n f i ( x 1 , ⋯ , x n ) cos θ i d S = ∫ ⋯ ∫ V ⏞ n ∑ i = 1 n ∂ f i ∂ x i d x i ⋯ d x i − 1 \overbrace{\int \dotsi \int_S}^{n-1} \sum_{i=1}^{n} f_i(x_1, \cdots, x_n) \cos \theta_i \d S = \overbrace{\int \dotsi \int_V}^{n} \sum_{i=1}^{n} \dfrac{\partial f_i}{\partial x_i} \d x_i \cdots \d x_{i-1}
∫ ⋯ ∫ S n − 1 i = 1 ∑ n f i ( x 1 , ⋯ , x n ) cos θ i d S = ∫ ⋯ ∫ V n i = 1 ∑ n ∂ x i ∂ f i d x i ⋯ d x i − 1
方框中的 d x i + 1 ⋯ d x i − 1 \d x_{i+1}\cdots \d x_{i-1} d x i + 1 ⋯ d x i − 1 ,意思是将 d x 1 , ⋯ , d x n \d x_1, \cdots, \d x_n d x 1 , ⋯ , d x n 形成一个环(即 d x n \d x_n d x n 下一个是 d x 1 \d x_1 d x 1 ),然后将 d x i \d x_i d x i 从环中拿出来,剩下的就是 d x i + 1 ⋯ d x i − 1 \d x_{i+1}\cdots \d x_{i-1} d x i + 1 ⋯ d x i − 1 。
还记得格林公式为
∫ C P d x + Q d y = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y \int_C P \d x + Q \d y = \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \d x \d y
∫ C P d x + Q d y = ∬ D ( ∂ x ∂ Q − ∂ y ∂ P ) d x d y
实际上就是
∫ C Q d y + P d x = ∬ D ∂ Q ∂ x d x d y + ∂ P ∂ y d y d x \int_C Q \d y + P \d x = \iint_D \dfrac{\partial Q}{\partial x}\d x \d y + \dfrac{\partial P}{\partial y} \d y \d x
∫ C Q d y + P d x = ∬ D ∂ x ∂ Q d x d y + ∂ y ∂ P d y d x
只是戏言,辅助记忆的伎俩。
高斯定理证明懒得写了。
向量场 F \bm{F} F 的散度 (sàn dù, divergence)定义为
div F = ∇ ⋅ F \operatorname{div} \bm{F} = \grad \boldsymbol{\cdot} \bm{F}
div F = ∇ ⋅ F
则高斯定理可写作
∯ S F ⋅ d S = ∭ V div F d V \oiint_S \bm{F} \boldsymbol{\cdot} \d \bm{S} = \iiint_V \operatorname{div} \bm{F} \d V
∬ S F ⋅ d S = ∭ V div F d V
即向量场 F \bm{F} F 在闭曲面 S S S 上的通量,等于该向量场的散度在包围该闭曲面的体积 V V V 上的体积分。(S = ∂ V S = \partial V S = ∂ V )
高斯公式中取 P = x , Q = y , R = z P = x, Q = y, R = z P = x , Q = y , R = z ,则有
∬ S x d y d z + y d z d x + z d x d y = ∭ V 3 d V = 3 V \iint_S x \d y \d z + y \d z \d x + z \d x \d y = \iiint_V 3 \d V = 3 V
∬ S x d y d z + y d z d x + z d x d y = ∭ V 3 d V = 3 V
即
V = 1 3 ∬ ∂ V x d y d z + y d z d x + z d x d y = ∬ ∂ V x d y d z = ∬ ∂ V y d z d x = ∬ ∂ V z d x d y \begin{aligned}
V &= \dfrac{1}{3} \iint_{\partial V} x \d y \d z + y \d z \d x + z \d x \d y\\
&= \iint_{\partial V} x \d y \d z\\
&= \iint_{\partial V} y \d z \d x\\
&= \iint_{\partial V} z \d x \d y
\end{aligned}
V = 3 1 ∬ ∂ V x d y d z + y d z d x + z d x d y = ∬ ∂ V x d y d z = ∬ ∂ V y d z d x = ∬ ∂ V z d x d y
斯托克斯公式(Stokes 公式)
设 S S S 为分片光滑的有向曲面,其边界 Γ \Gamma Γ 为逐段光滑的有向闭曲线,Γ \Gamma Γ 正向与 S S S 正侧符合右手法则。函数 P , Q , R P, Q, R P , Q , R 在 S , Γ S, \Gamma S , Γ 上具有一阶连续偏导数,则有
∮ Γ P d x + Q d y + R d z = ∬ S ( ∂ R ∂ y − ∂ Q ∂ z ) d y d z + ( ∂ P ∂ z − ∂ R ∂ x ) d z d x + ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y \oint_{\Gamma} P \d x + Q \d y + R \d z =\\ \iint_S \left( \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \d y \d z + \left( \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \d z \d x + \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \d x \d y
∮ Γ P d x + Q d y + R d z = ∬ S ( ∂ y ∂ R − ∂ z ∂ Q ) d y d z + ( ∂ z ∂ P − ∂ x ∂ R ) d z d x + ( ∂ x ∂ Q − ∂ y ∂ P ) d x d y
记成
∬ S ( ∂ R ∂ y d y d z + ∂ Q ∂ z d z d y ) + ( ∂ P ∂ z d z d x + ∂ R ∂ x d x d z ) + ( ∂ Q ∂ x d x d y + ∂ P ∂ y d y d x ) \iint_S \left( \dfrac{\partial R}{\partial y}\d y \d z + \dfrac{\partial Q}{\partial z}\d z \d y \right) + \left( \dfrac{\partial P}{\partial z}\d z \d x + \dfrac{\partial R}{\partial x}\d x \d z \right) + \left( \dfrac{\partial Q}{\partial x}\d x \d y + \dfrac{\partial P}{\partial y}\d y \d x \right)
∬ S ( ∂ y ∂ R d y d z + ∂ z ∂ Q d z d y ) + ( ∂ z ∂ P d z d x + ∂ x ∂ R d x d z ) + ( ∂ x ∂ Q d x d y + ∂ y ∂ P d y d x )
就行了。
或者
∮ Γ P d x + Q d y + R d z = ∬ S ∣ d y d z d z d x d x d y ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ = ∬ S ∣ cos α cos β cos γ ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ d S \begin{aligned}
\oint_{\Gamma} P \d x + Q \d y + R \d z &= \iint_S \begin{vmatrix}
\d y \d z & \d z \d x & \d x \d y \\
\dfrac{\partial }{\partial x} & \dfrac{\partial }{\partial y} & \dfrac{\partial }{\partial z} \\
P & Q & R
\end{vmatrix}\\
&= \iint_S \begin{vmatrix}
\cos \alpha & \cos \beta & \cos \gamma \\
\dfrac{\partial }{\partial x} & \dfrac{\partial }{\partial y} &\dfrac{\partial }{\partial z} \\
P & Q & R
\end{vmatrix} \d S
\end{aligned}
∮ Γ P d x + Q d y + R d z = ∬ S d y d z ∂ x ∂ P d z d x ∂ y ∂ Q d x d y ∂ z ∂ R = ∬ S cos α ∂ x ∂ P cos β ∂ y ∂ Q cos γ ∂ z ∂ R d S
其中 α , β , γ \alpha, \beta, \gamma α , β , γ 是 S S S 在点 ( x , y , z ) (x, y, z) ( x , y , z ) 处的法向量的方向角。
证明
未认真看
设 S S S 可参数化为 r ( u , v ) = ( x ( u , v ) , y ( u , v ) , z ( u , v ) ) , ( u , v ) ∈ D \bm{r}(u, v) = \bigl(x(u, v), y(u, v), z(u, v)\bigr),\quad (u, v) \in D r ( u , v ) = ( x ( u , v ) , y ( u , v ) , z ( u , v ) ) , ( u , v ) ∈ D (如有必要可分割),不妨设 S S S 的方向与 r u ′ × r v ′ \bm{r}_u' \boldsymbol{\times} \bm{r}_v' r u ′ × r v ′ 的方向一致。则
∮ Γ F ⋅ d r = ∮ Γ P d x + Q d y + R d z = ∮ ∂ D P ( ∂ x ∂ u d u + ∂ x ∂ v d v ) + Q ( ∂ y ∂ u d u + ∂ y ∂ v d v ) + R ( ∂ z ∂ u d u + ∂ z ∂ v d v ) = ∮ ∂ D ( P ∂ x ∂ u + Q ∂ y ∂ u + R ∂ z ∂ u ) d u + ( P ∂ x ∂ v + Q ∂ y ∂ v + R ∂ z ∂ v ) d v = ∬ D [ − ∂ ∂ v ( P ∂ x ∂ u + Q ∂ y ∂ u + R ∂ z ∂ u ) + ∂ ∂ u ( P ∂ x ∂ v + Q ∂ y ∂ v + R ∂ z ∂ v ) ] d u d v = ∬ D [ − ( ∂ P ∂ v ∂ x ∂ u + ∂ Q ∂ v ∂ y ∂ u + ∂ R ∂ v ∂ z ∂ u ) + ( ∂ P ∂ u ∂ x ∂ v + ∂ Q ∂ u ∂ y ∂ v + ∂ R ∂ u ∂ z ∂ v ) ] d u d v = ∬ D [ − ( ∂ P ∂ x ∂ x ∂ v + ∂ P ∂ y ∂ y ∂ v + ∂ P ∂ z ∂ z ∂ v ) ∂ x ∂ u − ( ∂ Q ∂ x ∂ x ∂ v + ∂ Q ∂ y ∂ y ∂ v + ∂ Q ∂ z ∂ z ∂ v ) ∂ x ∂ u − ( ∂ R ∂ x ∂ x ∂ v + ∂ R ∂ y ∂ y ∂ v + ∂ R ∂ z ∂ z ∂ v ) ∂ z ∂ u + ( ∂ P ∂ x ∂ x ∂ u + ∂ P ∂ y ∂ y ∂ u + ∂ P ∂ z ∂ z ∂ u ) ∂ x ∂ v + ( ∂ Q ∂ x ∂ x ∂ u + ∂ Q ∂ y ∂ y ∂ u + ∂ Q ∂ z ∂ z ∂ u ) ∂ y ∂ v + ( ∂ R ∂ x ∂ x ∂ u + ∂ R ∂ y ∂ y ∂ u + ∂ R ∂ z ∂ z ∂ u ) ∂ z ∂ v ] d u d v = ∬ D [ ( ∂ Q ∂ x − ∂ P ∂ y ) D ( x , y ) D ( u , v ) + ( ∂ R ∂ y − ∂ Q ∂ z ) D ( y , z ) D ( u , v ) + ( ∂ P ∂ z − ∂ R ∂ x ) D ( z , x ) D ( u , v ) ] d u d v = ∬ D ( ∂ R ∂ y − ∂ Q ∂ z , ∂ P ∂ z − ∂ R ∂ x , ∂ Q ∂ x − ∂ P ∂ y ) ⋅ ( r u ′ × r v ′ ) d u d v = ∬ D ( ∂ R ∂ y − ∂ Q ∂ z ) d y d z + ( ∂ P ∂ z − ∂ R ∂ x ) d z d x + ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y \begin{aligned}
\oint_{\Gamma} \bm{F} \boldsymbol{\cdot} \d \bm{r} &= \oint_{\Gamma} P \d x + Q \d y + R \d z\\
&= \oint_{\partial D} P\left( \dfrac{\partial x}{\partial u} \d u + \dfrac{\partial x}{\partial v}\d v \right) + Q\left( \dfrac{\partial y}{\partial u} \d u + \dfrac{\partial y}{\partial v}\d v \right) + R\left( \dfrac{\partial z}{\partial u} \d u + \dfrac{\partial z}{\partial v}\d v \right)\\
&= \oint_{\partial D} \left(P \dfrac{\partial x}{\partial u} + Q \dfrac{\partial y}{\partial u} + R \dfrac{\partial z}{\partial u}\right) \d u + \left(P \dfrac{\partial x}{\partial v} + Q \dfrac{\partial y}{\partial v} + R \dfrac{\partial z}{\partial v}\right) \d v\\
&= \iint_D \left[- \dfrac{\partial }{\partial v}\left(P \dfrac{\partial x}{\partial u} + Q \dfrac{\partial y}{\partial u} + R \dfrac{\partial z}{\partial u}\right) + \dfrac{\partial }{\partial u}\left(P \dfrac{\partial x}{\partial v} + Q \dfrac{\partial y}{\partial v} + R \dfrac{\partial z}{\partial v}\right)\right] \d u \d v\\
&= \iint_D \left[- \left(\dfrac{\partial P}{\partial \\v} \dfrac{\partial x}{\partial u} + \dfrac{\partial Q}{\partial v} \dfrac{\partial y}{\partial u} + \dfrac{\partial R}{\partial v} \dfrac{\partial z}{\partial u}\right) + \left(\dfrac{\partial P}{\partial u} \dfrac{\partial x}{\partial v} + \dfrac{\partial Q}{\partial u} \dfrac{\partial y}{\partial v} + \dfrac{\partial R}{\partial u} \dfrac{\partial z}{\partial v}\right)\right] \d u \d v\\
&= \iint_D \biggl[-\left(\dfrac{\partial P}{\partial x} \dfrac{\partial x}{\partial v} + \dfrac{\partial P}{\partial y} \dfrac{\partial y}{\partial v} + \dfrac{\partial P}{\partial z} \dfrac{\partial z}{\partial v}\right) \dfrac{\partial x}{\partial u} - \left(\dfrac{\partial Q}{\partial x} \dfrac{\partial x}{\partial v} + \dfrac{\partial Q}{\partial y} \dfrac{\partial y}{\partial v} + \dfrac{\partial Q}{\partial z} \dfrac{\partial z}{\partial v}\right) \dfrac{\partial x}{\partial u}- \left(\dfrac{\partial R}{\partial x} \dfrac{\partial x}{\partial v} + \dfrac{\partial R}{\partial y} \dfrac{\partial y}{\partial v} + \dfrac{\partial R}{\partial z} \dfrac{\partial z}{\partial v}\right) \dfrac{\partial z}{\partial u} + \\
& \left(\dfrac{\partial P}{\partial x} \dfrac{\partial x}{\partial u} + \dfrac{\partial P}{\partial y} \dfrac{\partial y}{\partial u} + \dfrac{\partial P}{\partial z} \dfrac{\partial z}{\partial u}\right) \dfrac{\partial x}{\partial v} + \left(\dfrac{\partial Q}{\partial x} \dfrac{\partial x}{\partial u} + \dfrac{\partial Q}{\partial y} \dfrac{\partial y}{\partial u} + \dfrac{\partial Q}{\partial z} \dfrac{\partial z}{\partial u}\right) \dfrac{\partial y}{\partial v} + \left(\dfrac{\partial R}{\partial x} \dfrac{\partial x}{\partial u} + \dfrac{\partial R}{\partial y} \dfrac{\partial y}{\partial u} + \dfrac{\partial R}{\partial z} \dfrac{\partial z}{\partial u}\right) \dfrac{\partial z}{\partial v}\biggr] \d u \d v\\
&= \iint_D \left[\left(\dfrac{\partial Q}{\partial x} - \dfrac{\partial P}{\partial y}\right) \dfrac{D(x, y)}{D(u, v)} + \left(\dfrac{\partial R}{\partial y} - \dfrac{\partial Q}{\partial z}\right) \dfrac{D(y, z)}{D(u, v)} + \left(\dfrac{\partial P}{\partial z} - \dfrac{\partial R}{\partial x}\right) \dfrac{D(z, x)}{D(u, v)}\right] \d u \d v\\
&= \iint_D \left(\dfrac{\partial R}{\partial y} - \dfrac{\partial Q}{\partial z}, \dfrac{\partial P}{\partial z} - \dfrac{\partial R}{\partial x}, \dfrac{\partial Q}{\partial x} - \dfrac{\partial P}{\partial y}\right) \boldsymbol{\cdot} \left(\bm{r}_u' \boldsymbol{\times} \bm{r}_v'\right) \d u \d v\\
&= \iint_D \left(\dfrac{\partial R}{\partial y} - \dfrac{\partial Q}{\partial z}\right) \d y \d z + \left(\dfrac{\partial P}{\partial z} - \dfrac{\partial R}{\partial x}\right) \d z \d x + \left(\dfrac{\partial Q}{\partial x} - \dfrac{\partial P}{\partial y}\right) \d x \d y
\end{aligned}
∮ Γ F ⋅ d r = ∮ Γ P d x + Q d y + R d z = ∮ ∂ D P ( ∂ u ∂ x d u + ∂ v ∂ x d v ) + Q ( ∂ u ∂ y d u + ∂ v ∂ y d v ) + R ( ∂ u ∂ z d u + ∂ v ∂ z d v ) = ∮ ∂ D ( P ∂ u ∂ x + Q ∂ u ∂ y + R ∂ u ∂ z ) d u + ( P ∂ v ∂ x + Q ∂ v ∂ y + R ∂ v ∂ z ) d v = ∬ D [ − ∂ v ∂ ( P ∂ u ∂ x + Q ∂ u ∂ y + R ∂ u ∂ z ) + ∂ u ∂ ( P ∂ v ∂ x + Q ∂ v ∂ y + R ∂ v ∂ z ) ] d u d v = ∬ D [ − ( ∂ v ∂ P ∂ u ∂ x + ∂ v ∂ Q ∂ u ∂ y + ∂ v ∂ R ∂ u ∂ z ) + ( ∂ u ∂ P ∂ v ∂ x + ∂ u ∂ Q ∂ v ∂ y + ∂ u ∂ R ∂ v ∂ z ) ] d u d v = ∬ D [ − ( ∂ x ∂ P ∂ v ∂ x + ∂ y ∂ P ∂ v ∂ y + ∂ z ∂ P ∂ v ∂ z ) ∂ u ∂ x − ( ∂ x ∂ Q ∂ v ∂ x + ∂ y ∂ Q ∂ v ∂ y + ∂ z ∂ Q ∂ v ∂ z ) ∂ u ∂ x − ( ∂ x ∂ R ∂ v ∂ x + ∂ y ∂ R ∂ v ∂ y + ∂ z ∂ R ∂ v ∂ z ) ∂ u ∂ z + ( ∂ x ∂ P ∂ u ∂ x + ∂ y ∂ P ∂ u ∂ y + ∂ z ∂ P ∂ u ∂ z ) ∂ v ∂ x + ( ∂ x ∂ Q ∂ u ∂ x + ∂ y ∂ Q ∂ u ∂ y + ∂ z ∂ Q ∂ u ∂ z ) ∂ v ∂ y + ( ∂ x ∂ R ∂ u ∂ x + ∂ y ∂ R ∂ u ∂ y + ∂ z ∂ R ∂ u ∂ z ) ∂ v ∂ z ] d u d v = ∬ D [ ( ∂ x ∂ Q − ∂ y ∂ P ) D ( u , v ) D ( x , y ) + ( ∂ y ∂ R − ∂ z ∂ Q ) D ( u , v ) D ( y , z ) + ( ∂ z ∂ P − ∂ x ∂ R ) D ( u , v ) D ( z , x ) ] d u d v = ∬ D ( ∂ y ∂ R − ∂ z ∂ Q , ∂ z ∂ P − ∂ x ∂ R , ∂ x ∂ Q − ∂ y ∂ P ) ⋅ ( r u ′ × r v ′ ) d u d v = ∬ D ( ∂ y ∂ R − ∂ z ∂ Q ) d y d z + ( ∂ z ∂ P − ∂ x ∂ R ) d z d x + ( ∂ x ∂ Q − ∂ y ∂ P ) d x d y
向量场 F \bm{F} F 的旋度 (curl)定义为
curl F = ∇ × F \operatorname{curl} \bm{F} = \grad \boldsymbol{\times} \bm{F}
curl F = ∇ × F
也可记作 rot F \operatorname{rot} \bm{F} rot F (回转度,rotation)。
例如 F = P i + Q j + R k \bm{F} = P \bm{i} + Q \bm{j} + R \bm{k} F = P i + Q j + R k ,则有
curl F = ∇ × F = ( ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ) × ( P , Q , R ) = ( ∂ R ∂ y − ∂ Q ∂ z , ∂ P ∂ z − ∂ R ∂ x , ∂ Q ∂ x − ∂ P ∂ y ) = ( ∂ R ∂ y − ∂ Q ∂ z ) i + ( ∂ P ∂ z − ∂ R ∂ x ) j + ( ∂ Q ∂ x − ∂ P ∂ y ) k = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ \begin{aligned}
\operatorname{curl} \bm{F} &= \grad \boldsymbol{\times} \bm{F}\\
&= \left(\dfrac{\partial }{\partial x}, \dfrac{\partial }{\partial y}, \dfrac{\partial }{\partial z}\right) \boldsymbol{\times} (P, Q, R)\\
&= \left(\dfrac{\partial R}{\partial y} - \dfrac{\partial Q}{\partial z}, \dfrac{\partial P}{\partial z} - \dfrac{\partial R}{\partial x}, \dfrac{\partial Q}{\partial x} - \dfrac{\partial P}{\partial y}\right)\\
&= \left( \dfrac{\partial R}{\partial y} - \dfrac{\partial Q}{\partial z} \right) \bm{i} + \left( \dfrac{\partial P}{\partial z} - \dfrac{\partial R}{\partial x} \right) \bm{j} + \left( \dfrac{\partial Q}{\partial x} - \dfrac{\partial P}{\partial y} \right) \bm{k}\\
&= \begin{vmatrix}
\bm{i} & \bm{j} & \bm{k}\\
\dfrac{\partial }{\partial x} & \dfrac{\partial }{\partial y} & \dfrac{\partial }{\partial z}\\
P & Q & R
\end{vmatrix}
\end{aligned}
curl F = ∇ × F = ( ∂ x ∂ , ∂ y ∂ , ∂ z ∂ ) × ( P , Q , R ) = ( ∂ y ∂ R − ∂ z ∂ Q , ∂ z ∂ P − ∂ x ∂ R , ∂ x ∂ Q − ∂ y ∂ P ) = ( ∂ y ∂ R − ∂ z ∂ Q ) i + ( ∂ z ∂ P − ∂ x ∂ R ) j + ( ∂ x ∂ Q − ∂ y ∂ P ) k = i ∂ x ∂ P j ∂ y ∂ Q k ∂ z ∂ R
则斯托克斯定理可写作
∮ Γ F ⋅ d r = ∬ S curl F ⋅ d S \oint_{\Gamma} \bm{F} \boldsymbol{\cdot} \d \bm{r} = \iint_S \operatorname{curl} \bm{F} \boldsymbol{\cdot} \d \bm{S}
∮ Γ F ⋅ d r = ∬ S curl F ⋅ d S
即向量场 F \bm{F} F 沿闭曲线 Γ \Gamma Γ 的环量,等于该向量场的旋度在该闭曲线围成的曲面 S S S 上的通量。(Γ = ∂ S \Gamma = \partial S Γ = ∂ S )
空间曲线积分与路径无关的条件
设 V V V 为单连通区域,P , Q , R P, Q, R P , Q , R 在 V V V 内具有一阶连续偏导数,则空间曲线积分
∫ C P d x + Q d y + R d z \int_C P \d x + Q \d y + R \d z
∫ C P d x + Q d y + R d z
在 V V V 内与路径无关的充要条件是
{ ∂ R ∂ y = ∂ Q ∂ z ∂ P ∂ z = ∂ R ∂ x ∂ Q ∂ x = ∂ P ∂ y \left\lbrace\begin{aligned}
\dfrac{\partial R}{\partial y} &= \dfrac{\partial Q}{\partial z} \\
\dfrac{\partial P}{\partial z} &= \dfrac{\partial R}{\partial x} \\
\dfrac{\partial Q}{\partial x} &= \dfrac{\partial P}{\partial y}
\end{aligned}\right.
⎩ ⎨ ⎧ ∂ y ∂ R ∂ z ∂ P ∂ x ∂ Q = ∂ z ∂ Q = ∂ x ∂ R = ∂ y ∂ P
在 V V V 内恒成立。
类似地,有:
设空间区域 V V V 是单连通区域,函数 P , Q , R P, Q, R P , Q , R 在 V V V 内具有一阶连续偏导数,则满足上面的条件,等价于存在 V V V 内的可微函数 u ( x , y , z ) u(x, y, z) u ( x , y , z ) 使得
d u = P d x + Q d y + R d z \d u = P \d x + Q \d y + R \d z
d u = P d x + Q d y + R d z
且
u ( x , y , z ) = ∫ ( x 0 , y 0 , z 0 ) ( x , y , z ) P d x + Q d y + R d z u(x, y, z) = \int_{(x_0, y_0, z_0)}^{(x, y, z)} P \d x + Q \d y + R \d z
u ( x , y , z ) = ∫ ( x 0 , y 0 , z 0 ) ( x , y , z ) P d x + Q d y + R d z
场论初步
数量场
f : R n → R f \colon \R^n \to \R
f : R n → R
向量场
f : R n → R n \bm{f} \colon \R^n \to \R^n
f : R n → R n
依赖于时间的场称为不定长场 或不稳定场 ,不依赖于时间的场称为定长场 或稳定场 。
对于数量场,我们有梯度、散度、旋度等概念。
数量场 f ( x , y , z ) f(x, y, z) f ( x , y , z ) 有等值面 f ( x , y , z ) = c f(x, y, z) = c f ( x , y , z ) = c 。
梯度、旋度、散度之前都介绍过了,这里整合一下。
梯度
∇ f = ( ∂ f ∂ x , ∂ f ∂ y , ∂ f ∂ z ) \grad f = \left( \dfrac{\pd f}{\pd x}, \dfrac{\pd f}{\pd y}, \dfrac{\pd f}{\pd z} \right)
∇ f = ( ∂ x ∂ f , ∂ y ∂ f , ∂ z ∂ f )
称为函数 f ( x , y , z ) f(x, y, z) f ( x , y , z ) 的梯度 (gradient),记作 ∇ f \grad f ∇ f 或 grad f \operatorname{grad} f grad f 或 ∂ f ∂ x i + ∂ f ∂ y j + ∂ f ∂ z k \dfrac{\pd f}{\pd x} \bm{i} + \dfrac{\pd f}{\pd y} \bm{j} + \dfrac{\pd f}{\pd z} \bm{k} ∂ x ∂ f i + ∂ y ∂ f j + ∂ z ∂ f k 。
Δ = ∇ ⋅ ∇ = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 \Delta = \grad \boldsymbol{\cdot} \grad = \dfrac{\pd^2}{\pd x^2} + \dfrac{\pd^2}{\pd y^2} + \dfrac{\pd^2}{\pd z^2}
Δ = ∇ ⋅ ∇ = ∂ x 2 ∂ 2 + ∂ y 2 ∂ 2 + ∂ z 2 ∂ 2
称为拉普拉斯算子 (Laplace operator)。
∇ C = 0 \grad C = \bm{0} ∇ C = 0
∇ ( u ± v ) = ∇ u + ∇ v \grad (u \pm v) = \grad u + \grad v ∇ ( u ± v ) = ∇ u + ∇ v
∇ ( u v ) = u ∇ v + v ∇ u \grad (uv) = u \grad v + v \grad u ∇ ( uv ) = u ∇ v + v ∇ u
∇ ( u v ) = v ∇ u − u ∇ v v 2 \grad \left( \dfrac{u}{v} \right) = \dfrac{v \grad u - u \grad v}{v^2} ∇ ( v u ) = v 2 v ∇ u − u ∇ v
∇ φ ( u ) = φ ′ ( u ) ∇ u \grad \varphi(u) = \varphi'(u) \grad u ∇ φ ( u ) = φ ′ ( u ) ∇ u
∇ φ ( u , v ) = ∂ φ ∂ u ∇ u + ∂ φ ∂ v ∇ v \grad \varphi(u, v) = \dfrac{\partial \varphi}{\partial u} \grad u + \dfrac{\partial \varphi}{\partial v} \grad v ∇ φ ( u , v ) = ∂ u ∂ φ ∇ u + ∂ v ∂ φ ∇ v
散度
向量场 A \bm{A} A 通过曲面 S S S 指定侧的流量(通量)定义为
Φ = ∬ S A d S \Phi = \iint_S \bm{A} \d \bm{S}
Φ = ∬ S A d S
向量场 A \bm{A} A 的散度 (divergence)定义为
div A ( M 0 ) = lim Ω → M 0 ∬ ∂ Ω A d S ∭ Ω d x d y d z \operatorname{div} \bm{A}(M_0) = \lim_{\Omega \to M_0} \dfrac{\displaystyle \iint_{\partial \Omega} \bm{A} \d \bm{S}}{\displaystyle \iiint_{\Omega}\d x \d y \d z}
div A ( M 0 ) = Ω → M 0 lim ∭ Ω d x d y d z ∬ ∂ Ω A d S
即
div A = ∇ ⋅ A \operatorname{div} \bm{A} = \grad \boldsymbol{\cdot} \bm{A}
div A = ∇ ⋅ A
若散度在一点大于零 ,表明在该点附近流向该点的量少于该点流出的量,称该点为「源」,若散度在一点处小于零 ,则表明在该点附近流向该点的量多于自该点流出的量,称该点为「漏」。
若向量场 A \bm{A} A 散度 div A \operatorname{div} \bm{A} div A 处处为零,则称 A \bm{A} A 为无源场 (管型场)。
div ( λ A ) = λ div A \operatorname{div}(\lambda \bm{A}) = \lambda \operatorname{div} \bm{A} div ( λ A ) = λ div A
div ( A 1 ± A 2 ) = div A 1 ± div A 2 \operatorname{div}(\bm{A}_1 \pm \bm{A}_2) = \operatorname{div} \bm{A}_1 \pm \operatorname{div} \bm{A}_2 div ( A 1 ± A 2 ) = div A 1 ± div A 2
div ( φ A ) = φ div A + A ⋅ ∇ φ \operatorname{div} (\varphi \bm{A}) = \varphi \operatorname{div} \bm{A} + \bm{A} \boldsymbol{\cdot} \grad \varphi div ( φ A ) = φ div A + A ⋅ ∇ φ (φ \varphi φ 为数量场)
div ( ∇ φ ) = Δ φ \operatorname{div}(\grad \varphi) = \Delta \varphi div ( ∇ φ ) = Δ φ
旋度
向量场 A \bm{A} A 沿曲线 C C C 的环流量定义为
I = ∮ C A ⋅ d r I = \oint_C \bm{A} \boldsymbol{\cdot} \d \bm{r}
I = ∮ C A ⋅ d r
向量场 A \bm{A} A 的旋度 (curl)定义为
curl A = ∇ × A \operatorname{curl} \bm{A} = \grad \boldsymbol{\times} \bm{A}
curl A = ∇ × A
也可记作 rot A \operatorname{rot} \bm{A} rot A (回转度,rotation)。
物理含义是,流速场 A \bm{A} A 沿闭曲线 C C C 整体上看是否旋转。
rot ( λ A ) = λ rot A \operatorname{rot} (\lambda \bm{A}) = \lambda \operatorname{rot} \bm{A} rot ( λ A ) = λ rot A
rot ( A 1 ± A 2 ) = rot A 1 ± rot A 2 \operatorname{rot} (\bm{A}_1 \pm \bm{A}_2) = \operatorname{rot} \bm{A}_1 \pm \operatorname{rot} \bm{A}_2 rot ( A 1 ± A 2 ) = rot A 1 ± rot A 2
rot ( φ A ) = φ rot A + ∇ φ × A \operatorname{rot} (\varphi \bm{A}) = \varphi \operatorname{rot} \bm{A} + \grad \varphi \boldsymbol{\times} \bm{A} rot ( φ A ) = φ rot A + ∇ φ × A (φ \varphi φ 为数量场)
div ( A × B ) = B ⋅ rot A − A ⋅ rot B \operatorname{div}(\bm{A} \boldsymbol{\times} \bm{B}) = \bm{B} \boldsymbol{\cdot} \operatorname{rot} \bm{A} - \bm{A} \boldsymbol{\cdot} \operatorname{rot} \bm{B} div ( A × B ) = B ⋅ rot A − A ⋅ rot B
rot ( ∇ φ ) = 0 \operatorname{rot}(\grad \varphi) = \bm{0} rot ( ∇ φ ) = 0
div ( rot A ) = 0 \operatorname{div}(\operatorname{rot} \bm{A}) = 0 div ( rot A ) = 0
有势场
若向量场 A \bm{A} A 可表示为某个数量场 φ \varphi φ 的梯度,即 A = ∇ φ \bm{A} = \grad \varphi A = ∇ φ ,则称 A \bm{A} A 为有势场 (位势场、保守场,potential field)。
向量场 A \bm{A} A 为有势场的充要条件 为 rot A = 0 \operatorname{rot} \bm{A} = \bm{0} rot A = 0 。
若向量场 A \bm{A} A 旋度处处为零,则称向量场 A \bm{A} A 为无旋场 。则有势场为无旋场。
若向量场 A \bm{A} A 既是无源场又是无旋场,则称 A \bm{A} A 为调和场 。
调和场 A \bm{A} A 的势函数 f ( x , y , z ) f(x, y, z) f ( x , y , z ) 满足拉普拉斯方程
Δ f = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 + ∂ 2 f ∂ z 2 = 0 \Delta f = \dfrac{\partial^2 f}{\partial x^2} + \dfrac{\partial^2 f}{\partial y^2} + \dfrac{\partial^2 f}{\partial z^2} = 0
Δ f = ∂ x 2 ∂ 2 f + ∂ y 2 ∂ 2 f + ∂ z 2 ∂ 2 f = 0